Whakaoti mō x
x=\sqrt{2}+2\approx 3.414213562
x=2-\sqrt{2}\approx 0.585786438
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{2}x^{2}+2x=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-\frac{1}{2}x^{2}+2x-1=0
Tangohia te 1 mai i ngā taha e rua.
x=\frac{-2±\sqrt{2^{2}-4\left(-\frac{1}{2}\right)\left(-1\right)}}{2\left(-\frac{1}{2}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{1}{2} mō a, 2 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-\frac{1}{2}\right)\left(-1\right)}}{2\left(-\frac{1}{2}\right)}
Pūrua 2.
x=\frac{-2±\sqrt{4+2\left(-1\right)}}{2\left(-\frac{1}{2}\right)}
Whakareatia -4 ki te -\frac{1}{2}.
x=\frac{-2±\sqrt{4-2}}{2\left(-\frac{1}{2}\right)}
Whakareatia 2 ki te -1.
x=\frac{-2±\sqrt{2}}{2\left(-\frac{1}{2}\right)}
Tāpiri 4 ki te -2.
x=\frac{-2±\sqrt{2}}{-1}
Whakareatia 2 ki te -\frac{1}{2}.
x=\frac{\sqrt{2}-2}{-1}
Nā, me whakaoti te whārite x=\frac{-2±\sqrt{2}}{-1} ina he tāpiri te ±. Tāpiri -2 ki te \sqrt{2}.
x=2-\sqrt{2}
Whakawehe -2+\sqrt{2} ki te -1.
x=\frac{-\sqrt{2}-2}{-1}
Nā, me whakaoti te whārite x=\frac{-2±\sqrt{2}}{-1} ina he tango te ±. Tango \sqrt{2} mai i -2.
x=\sqrt{2}+2
Whakawehe -2-\sqrt{2} ki te -1.
x=2-\sqrt{2} x=\sqrt{2}+2
Kua oti te whārite te whakatau.
-\frac{1}{2}x^{2}+2x=1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{-\frac{1}{2}x^{2}+2x}{-\frac{1}{2}}=\frac{1}{-\frac{1}{2}}
Me whakarea ngā taha e rua ki te -2.
x^{2}+\frac{2}{-\frac{1}{2}}x=\frac{1}{-\frac{1}{2}}
Mā te whakawehe ki te -\frac{1}{2} ka wetekia te whakareanga ki te -\frac{1}{2}.
x^{2}-4x=\frac{1}{-\frac{1}{2}}
Whakawehe 2 ki te -\frac{1}{2} mā te whakarea 2 ki te tau huripoki o -\frac{1}{2}.
x^{2}-4x=-2
Whakawehe 1 ki te -\frac{1}{2} mā te whakarea 1 ki te tau huripoki o -\frac{1}{2}.
x^{2}-4x+\left(-2\right)^{2}=-2+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-2+4
Pūrua -2.
x^{2}-4x+4=2
Tāpiri -2 ki te 4.
\left(x-2\right)^{2}=2
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=\sqrt{2} x-2=-\sqrt{2}
Whakarūnātia.
x=\sqrt{2}+2 x=2-\sqrt{2}
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}