Whakaoti mō x
x=-12-\frac{4}{y}
y\neq 0
Whakaoti mō y
y=-\frac{4}{x+12}
x\neq -12
Graph
Tohaina
Kua tāruatia ki te papatopenga
4=-\frac{1}{4}x\times 4y+4y\left(-3\right)
Me whakarea ngā taha e rua o te whārite ki te 4y, arā, te tauraro pātahi he tino iti rawa te kitea o y,4.
4=-xy+4y\left(-3\right)
Whakareatia te -\frac{1}{4} ki te 4, ka -1.
4=-xy-12y
Whakareatia te 4 ki te -3, ka -12.
-xy-12y=4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-xy=4+12y
Me tāpiri te 12y ki ngā taha e rua.
\left(-y\right)x=12y+4
He hanga arowhānui tō te whārite.
\frac{\left(-y\right)x}{-y}=\frac{12y+4}{-y}
Whakawehea ngā taha e rua ki te -y.
x=\frac{12y+4}{-y}
Mā te whakawehe ki te -y ka wetekia te whakareanga ki te -y.
x=-12-\frac{4}{y}
Whakawehe 4+12y ki te -y.
4=-\frac{1}{4}x\times 4y+4y\left(-3\right)
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4y, arā, te tauraro pātahi he tino iti rawa te kitea o y,4.
4=-xy+4y\left(-3\right)
Whakareatia te -\frac{1}{4} ki te 4, ka -1.
4=-xy-12y
Whakareatia te 4 ki te -3, ka -12.
-xy-12y=4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(-x-12\right)y=4
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\frac{\left(-x-12\right)y}{-x-12}=\frac{4}{-x-12}
Whakawehea ngā taha e rua ki te -x-12.
y=\frac{4}{-x-12}
Mā te whakawehe ki te -x-12 ka wetekia te whakareanga ki te -x-12.
y=-\frac{4}{x+12}
Whakawehe 4 ki te -x-12.
y=-\frac{4}{x+12}\text{, }y\neq 0
Tē taea kia ōrite te tāupe y ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}