Whakaoti mō f
f=x\left(5x+1\right)
x\neq -\frac{1}{5}\text{ and }x\neq 0
Whakaoti mō x (complex solution)
x=\frac{\sqrt{20f+1}-1}{10}
x=\frac{-\sqrt{20f+1}-1}{10}\text{, }f\neq 0
Whakaoti mō x
x=\frac{\sqrt{20f+1}-1}{10}
x=\frac{-\sqrt{20f+1}-1}{10}\text{, }f\neq 0\text{ and }f\geq -\frac{1}{20}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(5x+1\right)\times 1x=f
Tē taea kia ōrite te tāupe f ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te f\left(5x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o f,1+5x.
\left(5x+1\right)x=f
Whakamahia te āhuatanga tohatoha hei whakarea te 5x+1 ki te 1.
5x^{2}+x=f
Whakamahia te āhuatanga tohatoha hei whakarea te 5x+1 ki te x.
f=5x^{2}+x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
f=5x^{2}+x\text{, }f\neq 0
Tē taea kia ōrite te tāupe f ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}