Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{5}{6}}{\frac{2}{19}|\frac{\frac{3}{2}+\frac{27}{5}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Whakawehe 1 ki te \frac{\frac{2}{19}|\frac{\frac{3}{2}+\frac{27}{5}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}{\frac{5}{6}} mā te whakarea 1 ki te tau huripoki o \frac{\frac{2}{19}|\frac{\frac{3}{2}+\frac{27}{5}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}{\frac{5}{6}}.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{\frac{15}{10}+\frac{54}{10}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Ko te maha noa iti rawa atu o 2 me 5 ko 10. Me tahuri \frac{3}{2} me \frac{27}{5} ki te hautau me te tautūnga 10.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{\frac{15+54}{10}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Tā te mea he rite te tauraro o \frac{15}{10} me \frac{54}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{\frac{69}{10}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Tāpirihia te 15 ki te 54, ka 69.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{69}{10}\times \frac{5}{3}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Whakawehe \frac{69}{10} ki te \frac{3}{5} mā te whakarea \frac{69}{10} ki te tau huripoki o \frac{3}{5}.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{69\times 5}{10\times 3}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Me whakarea te \frac{69}{10} ki te \frac{5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{345}{30}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Mahia ngā whakarea i roto i te hautanga \frac{69\times 5}{10\times 3}.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{23}{2}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Whakahekea te hautanga \frac{345}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{23}{2}-\left(\frac{22}{12}-\frac{21}{12}\right)|}
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri \frac{11}{6} me \frac{7}{4} ki te hautau me te tautūnga 12.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{23}{2}-\frac{22-21}{12}|}
Tā te mea he rite te tauraro o \frac{22}{12} me \frac{21}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{23}{2}-\frac{1}{12}|}
Tangohia te 21 i te 22, ka 1.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{138}{12}-\frac{1}{12}|}
Ko te maha noa iti rawa atu o 2 me 12 ko 12. Me tahuri \frac{23}{2} me \frac{1}{12} ki te hautau me te tautūnga 12.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{138-1}{12}|}
Tā te mea he rite te tauraro o \frac{138}{12} me \frac{1}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{137}{12}|}
Tangohia te 1 i te 138, ka 137.
\frac{\frac{5}{6}}{\frac{2}{19}\times \frac{137}{12}}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o \frac{137}{12} ko \frac{137}{12}.
\frac{\frac{5}{6}}{\frac{2\times 137}{19\times 12}}
Me whakarea te \frac{2}{19} ki te \frac{137}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{5}{6}}{\frac{274}{228}}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 137}{19\times 12}.
\frac{\frac{5}{6}}{\frac{137}{114}}
Whakahekea te hautanga \frac{274}{228} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5}{6}\times \frac{114}{137}
Whakawehe \frac{5}{6} ki te \frac{137}{114} mā te whakarea \frac{5}{6} ki te tau huripoki o \frac{137}{114}.
\frac{5\times 114}{6\times 137}
Me whakarea te \frac{5}{6} ki te \frac{114}{137} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{570}{822}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 114}{6\times 137}.
\frac{95}{137}
Whakahekea te hautanga \frac{570}{822} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.