Aromātai
\frac{95}{137}\approx 0.693430657
Tauwehe
\frac{5 \cdot 19}{137} = 0.6934306569343066
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{\frac{3}{2}+\frac{27}{5}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Whakawehe 1 ki te \frac{\frac{2}{19}|\frac{\frac{3}{2}+\frac{27}{5}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}{\frac{5}{6}} mā te whakarea 1 ki te tau huripoki o \frac{\frac{2}{19}|\frac{\frac{3}{2}+\frac{27}{5}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}{\frac{5}{6}}.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{\frac{15}{10}+\frac{54}{10}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Ko te maha noa iti rawa atu o 2 me 5 ko 10. Me tahuri \frac{3}{2} me \frac{27}{5} ki te hautau me te tautūnga 10.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{\frac{15+54}{10}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Tā te mea he rite te tauraro o \frac{15}{10} me \frac{54}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{\frac{69}{10}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Tāpirihia te 15 ki te 54, ka 69.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{69}{10}\times \frac{5}{3}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Whakawehe \frac{69}{10} ki te \frac{3}{5} mā te whakarea \frac{69}{10} ki te tau huripoki o \frac{3}{5}.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{69\times 5}{10\times 3}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Me whakarea te \frac{69}{10} ki te \frac{5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{345}{30}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Mahia ngā whakarea i roto i te hautanga \frac{69\times 5}{10\times 3}.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{23}{2}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Whakahekea te hautanga \frac{345}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{23}{2}-\left(\frac{22}{12}-\frac{21}{12}\right)|}
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri \frac{11}{6} me \frac{7}{4} ki te hautau me te tautūnga 12.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{23}{2}-\frac{22-21}{12}|}
Tā te mea he rite te tauraro o \frac{22}{12} me \frac{21}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{23}{2}-\frac{1}{12}|}
Tangohia te 21 i te 22, ka 1.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{138}{12}-\frac{1}{12}|}
Ko te maha noa iti rawa atu o 2 me 12 ko 12. Me tahuri \frac{23}{2} me \frac{1}{12} ki te hautau me te tautūnga 12.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{138-1}{12}|}
Tā te mea he rite te tauraro o \frac{138}{12} me \frac{1}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{137}{12}|}
Tangohia te 1 i te 138, ka 137.
\frac{\frac{5}{6}}{\frac{2}{19}\times \frac{137}{12}}
Ko te uara pū o tētahi tau tūturu a ko a ina a\geq 0, ko -a rānei ina a<0. Ko te uara pū o \frac{137}{12} ko \frac{137}{12}.
\frac{\frac{5}{6}}{\frac{2\times 137}{19\times 12}}
Me whakarea te \frac{2}{19} ki te \frac{137}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{5}{6}}{\frac{274}{228}}
Mahia ngā whakarea i roto i te hautanga \frac{2\times 137}{19\times 12}.
\frac{\frac{5}{6}}{\frac{137}{114}}
Whakahekea te hautanga \frac{274}{228} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{5}{6}\times \frac{114}{137}
Whakawehe \frac{5}{6} ki te \frac{137}{114} mā te whakarea \frac{5}{6} ki te tau huripoki o \frac{137}{114}.
\frac{5\times 114}{6\times 137}
Me whakarea te \frac{5}{6} ki te \frac{114}{137} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{570}{822}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 114}{6\times 137}.
\frac{95}{137}
Whakahekea te hautanga \frac{570}{822} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}