Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x^{2}-4=11\times 3
Me whakarea ngā taha e rua ki te 3, te tau utu o \frac{1}{3}.
6x^{2}-4=33
Whakareatia te 11 ki te 3, ka 33.
6x^{2}=33+4
Me tāpiri te 4 ki ngā taha e rua.
6x^{2}=37
Tāpirihia te 33 ki te 4, ka 37.
x^{2}=\frac{37}{6}
Whakawehea ngā taha e rua ki te 6.
x=\frac{\sqrt{222}}{6} x=-\frac{\sqrt{222}}{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
6x^{2}-4=11\times 3
Me whakarea ngā taha e rua ki te 3, te tau utu o \frac{1}{3}.
6x^{2}-4=33
Whakareatia te 11 ki te 3, ka 33.
6x^{2}-4-33=0
Tangohia te 33 mai i ngā taha e rua.
6x^{2}-37=0
Tangohia te 33 i te -4, ka -37.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-37\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 0 mō b, me -37 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-37\right)}}{2\times 6}
Pūrua 0.
x=\frac{0±\sqrt{-24\left(-37\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{0±\sqrt{888}}{2\times 6}
Whakareatia -24 ki te -37.
x=\frac{0±2\sqrt{222}}{2\times 6}
Tuhia te pūtakerua o te 888.
x=\frac{0±2\sqrt{222}}{12}
Whakareatia 2 ki te 6.
x=\frac{\sqrt{222}}{6}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{222}}{12} ina he tāpiri te ±.
x=-\frac{\sqrt{222}}{6}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{222}}{12} ina he tango te ±.
x=\frac{\sqrt{222}}{6} x=-\frac{\sqrt{222}}{6}
Kua oti te whārite te whakatau.