Whakaoti mō x
x=18y-\frac{23}{4}
Whakaoti mō y
y=\frac{x}{18}+\frac{23}{72}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{1}{2}x-9y=-\frac{23}{8}
Ka taea te hautanga \frac{-23}{8} te tuhi anō ko -\frac{23}{8} mā te tango i te tohu tōraro.
\frac{1}{2}x=-\frac{23}{8}+9y
Me tāpiri te 9y ki ngā taha e rua.
\frac{1}{2}x=9y-\frac{23}{8}
He hanga arowhānui tō te whārite.
\frac{\frac{1}{2}x}{\frac{1}{2}}=\frac{9y-\frac{23}{8}}{\frac{1}{2}}
Me whakarea ngā taha e rua ki te 2.
x=\frac{9y-\frac{23}{8}}{\frac{1}{2}}
Mā te whakawehe ki te \frac{1}{2} ka wetekia te whakareanga ki te \frac{1}{2}.
x=18y-\frac{23}{4}
Whakawehe -\frac{23}{8}+9y ki te \frac{1}{2} mā te whakarea -\frac{23}{8}+9y ki te tau huripoki o \frac{1}{2}.
\frac{1}{2}x-9y=-\frac{23}{8}
Ka taea te hautanga \frac{-23}{8} te tuhi anō ko -\frac{23}{8} mā te tango i te tohu tōraro.
-9y=-\frac{23}{8}-\frac{1}{2}x
Tangohia te \frac{1}{2}x mai i ngā taha e rua.
-9y=-\frac{x}{2}-\frac{23}{8}
He hanga arowhānui tō te whārite.
\frac{-9y}{-9}=\frac{-\frac{x}{2}-\frac{23}{8}}{-9}
Whakawehea ngā taha e rua ki te -9.
y=\frac{-\frac{x}{2}-\frac{23}{8}}{-9}
Mā te whakawehe ki te -9 ka wetekia te whakareanga ki te -9.
y=\frac{x}{18}+\frac{23}{72}
Whakawehe -\frac{23}{8}-\frac{x}{2} ki te -9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}