Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x^{2}+4x+1
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=4 ab=4\times 1=4
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 4x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,4 2,2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
1+4=5 2+2=4
Tātaihia te tapeke mō ia takirua.
a=2 b=2
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(4x^{2}+2x\right)+\left(2x+1\right)
Tuhia anō te 4x^{2}+4x+1 hei \left(4x^{2}+2x\right)+\left(2x+1\right).
2x\left(2x+1\right)+2x+1
Whakatauwehea atu 2x i te 4x^{2}+2x.
\left(2x+1\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi 2x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(2x+1\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(4x^{2}+4x+1)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(4,4,1)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{4x^{2}}=2x
Kimihia te pūtakerua o te kīanga tau ārahi, 4x^{2}.
\left(2x+1\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
4x^{2}+4x+1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 4}}{2\times 4}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-4±\sqrt{16-4\times 4}}{2\times 4}
Pūrua 4.
x=\frac{-4±\sqrt{16-16}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-4±\sqrt{0}}{2\times 4}
Tāpiri 16 ki te -16.
x=\frac{-4±0}{2\times 4}
Tuhia te pūtakerua o te 0.
x=\frac{-4±0}{8}
Whakareatia 2 ki te 4.
4x^{2}+4x+1=4\left(x-\left(-\frac{1}{2}\right)\right)\left(x-\left(-\frac{1}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{1}{2} mō te x_{1} me te -\frac{1}{2} mō te x_{2}.
4x^{2}+4x+1=4\left(x+\frac{1}{2}\right)\left(x+\frac{1}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
4x^{2}+4x+1=4\times \frac{2x+1}{2}\left(x+\frac{1}{2}\right)
Tāpiri \frac{1}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4x^{2}+4x+1=4\times \frac{2x+1}{2}\times \frac{2x+1}{2}
Tāpiri \frac{1}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4x^{2}+4x+1=4\times \frac{\left(2x+1\right)\left(2x+1\right)}{2\times 2}
Whakareatia \frac{2x+1}{2} ki te \frac{2x+1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
4x^{2}+4x+1=4\times \frac{\left(2x+1\right)\left(2x+1\right)}{4}
Whakareatia 2 ki te 2.
4x^{2}+4x+1=\left(2x+1\right)\left(2x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 4 me te 4.