Whakaoti mō x
x=\frac{3}{4}=0.75
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\sqrt{1-x}=4x-1
Me tango 1 mai i ngā taha e rua o te whārite.
\left(4\sqrt{1-x}\right)^{2}=\left(4x-1\right)^{2}
Pūruatia ngā taha e rua o te whārite.
4^{2}\left(\sqrt{1-x}\right)^{2}=\left(4x-1\right)^{2}
Whakarohaina te \left(4\sqrt{1-x}\right)^{2}.
16\left(\sqrt{1-x}\right)^{2}=\left(4x-1\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
16\left(1-x\right)=\left(4x-1\right)^{2}
Tātaihia te \sqrt{1-x} mā te pū o 2, kia riro ko 1-x.
16-16x=\left(4x-1\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 16 ki te 1-x.
16-16x=16x^{2}-8x+1
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4x-1\right)^{2}.
16-16x-16x^{2}=-8x+1
Tangohia te 16x^{2} mai i ngā taha e rua.
16-16x-16x^{2}+8x=1
Me tāpiri te 8x ki ngā taha e rua.
16-8x-16x^{2}=1
Pahekotia te -16x me 8x, ka -8x.
16-8x-16x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
15-8x-16x^{2}=0
Tangohia te 1 i te 16, ka 15.
-16x^{2}-8x+15=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-8 ab=-16\times 15=-240
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -16x^{2}+ax+bx+15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-240 2,-120 3,-80 4,-60 5,-48 6,-40 8,-30 10,-24 12,-20 15,-16
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -240.
1-240=-239 2-120=-118 3-80=-77 4-60=-56 5-48=-43 6-40=-34 8-30=-22 10-24=-14 12-20=-8 15-16=-1
Tātaihia te tapeke mō ia takirua.
a=12 b=-20
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(-16x^{2}+12x\right)+\left(-20x+15\right)
Tuhia anō te -16x^{2}-8x+15 hei \left(-16x^{2}+12x\right)+\left(-20x+15\right).
4x\left(-4x+3\right)+5\left(-4x+3\right)
Tauwehea te 4x i te tuatahi me te 5 i te rōpū tuarua.
\left(-4x+3\right)\left(4x+5\right)
Whakatauwehea atu te kīanga pātahi -4x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{3}{4} x=-\frac{5}{4}
Hei kimi otinga whārite, me whakaoti te -4x+3=0 me te 4x+5=0.
1+4\sqrt{1-\frac{3}{4}}=4\times \frac{3}{4}
Whakakapia te \frac{3}{4} mō te x i te whārite 1+4\sqrt{1-x}=4x.
3=3
Whakarūnātia. Ko te uara x=\frac{3}{4} kua ngata te whārite.
1+4\sqrt{1-\left(-\frac{5}{4}\right)}=4\left(-\frac{5}{4}\right)
Whakakapia te -\frac{5}{4} mō te x i te whārite 1+4\sqrt{1-x}=4x.
7=-5
Whakarūnātia. Ko te uara x=-\frac{5}{4} kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
x=\frac{3}{4}
Ko te whārite 4\sqrt{1-x}=4x-1 he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}