Aromātai
-\frac{23}{3}\approx -7.666666667
Tauwehe
-\frac{23}{3} = -7\frac{2}{3} = -7.666666666666667
Tohaina
Kua tāruatia ki te papatopenga
21-5\times \frac{7}{3}+7-\frac{2\times 12\times 2}{2}
Tāpirihia te 1 ki te 20, ka 21.
21-\frac{5\times 7}{3}+7-\frac{2\times 12\times 2}{2}
Tuhia te 5\times \frac{7}{3} hei hautanga kotahi.
21-\frac{35}{3}+7-\frac{2\times 12\times 2}{2}
Whakareatia te 5 ki te 7, ka 35.
\frac{63}{3}-\frac{35}{3}+7-\frac{2\times 12\times 2}{2}
Me tahuri te 21 ki te hautau \frac{63}{3}.
\frac{63-35}{3}+7-\frac{2\times 12\times 2}{2}
Tā te mea he rite te tauraro o \frac{63}{3} me \frac{35}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{28}{3}+7-\frac{2\times 12\times 2}{2}
Tangohia te 35 i te 63, ka 28.
\frac{28}{3}+\frac{21}{3}-\frac{2\times 12\times 2}{2}
Me tahuri te 7 ki te hautau \frac{21}{3}.
\frac{28+21}{3}-\frac{2\times 12\times 2}{2}
Tā te mea he rite te tauraro o \frac{28}{3} me \frac{21}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{49}{3}-\frac{2\times 12\times 2}{2}
Tāpirihia te 28 ki te 21, ka 49.
\frac{49}{3}-12\times 2
Me whakakore te 2 me te 2.
\frac{49}{3}-24
Whakareatia te 12 ki te 2, ka 24.
\frac{49}{3}-\frac{72}{3}
Me tahuri te 24 ki te hautau \frac{72}{3}.
\frac{49-72}{3}
Tā te mea he rite te tauraro o \frac{49}{3} me \frac{72}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{23}{3}
Tangohia te 72 i te 49, ka -23.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}