Aromātai
\frac{163}{3}\approx 54.333333333
Tauwehe
\frac{163}{3} = 54\frac{1}{3} = 54.333333333333336
Tohaina
Kua tāruatia ki te papatopenga
1+4\times \frac{7}{3}\times 7-2\times \frac{12}{2}
Whakawehea te 20 ki te 5, kia riro ko 4.
1+\frac{4\times 7}{3}\times 7-2\times \frac{12}{2}
Tuhia te 4\times \frac{7}{3} hei hautanga kotahi.
1+\frac{28}{3}\times 7-2\times \frac{12}{2}
Whakareatia te 4 ki te 7, ka 28.
1+\frac{28\times 7}{3}-2\times \frac{12}{2}
Tuhia te \frac{28}{3}\times 7 hei hautanga kotahi.
1+\frac{196}{3}-2\times \frac{12}{2}
Whakareatia te 28 ki te 7, ka 196.
\frac{3}{3}+\frac{196}{3}-2\times \frac{12}{2}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{3+196}{3}-2\times \frac{12}{2}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{196}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{199}{3}-2\times \frac{12}{2}
Tāpirihia te 3 ki te 196, ka 199.
\frac{199}{3}-2\times 6
Whakawehea te 12 ki te 2, kia riro ko 6.
\frac{199}{3}-12
Whakareatia te 2 ki te 6, ka 12.
\frac{199}{3}-\frac{36}{3}
Me tahuri te 12 ki te hautau \frac{36}{3}.
\frac{199-36}{3}
Tā te mea he rite te tauraro o \frac{199}{3} me \frac{36}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{163}{3}
Tangohia te 36 i te 199, ka 163.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}