Whakaoti mō x
x=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
1+2\left(-x\right)+4-1=-\left(x+3\right)-1
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te -x+2.
5+2\left(-x\right)-1=-\left(x+3\right)-1
Tāpirihia te 1 ki te 4, ka 5.
4+2\left(-x\right)=-\left(x+3\right)-1
Tangohia te 1 i te 5, ka 4.
4+2\left(-x\right)=-x-3-1
Hei kimi i te tauaro o x+3, kimihia te tauaro o ia taurangi.
4+2\left(-x\right)=-x-4
Tangohia te 1 i te -3, ka -4.
4+2\left(-x\right)+x=-4
Me tāpiri te x ki ngā taha e rua.
2\left(-x\right)+x=-4-4
Tangohia te 4 mai i ngā taha e rua.
2\left(-x\right)+x=-8
Tangohia te 4 i te -4, ka -8.
-2x+x=-8
Whakareatia te 2 ki te -1, ka -2.
-x=-8
Pahekotia te -2x me x, ka -x.
x=8
Me whakarea ngā taha e rua ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}