Tauwehe
\left(6x+1\right)^{2}
Aromātai
\left(6x+1\right)^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
36x^{2}+12x+1
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=12 ab=36\times 1=36
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 36x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,36 2,18 3,12 4,9 6,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Tātaihia te tapeke mō ia takirua.
a=6 b=6
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(36x^{2}+6x\right)+\left(6x+1\right)
Tuhia anō te 36x^{2}+12x+1 hei \left(36x^{2}+6x\right)+\left(6x+1\right).
6x\left(6x+1\right)+6x+1
Whakatauwehea atu 6x i te 36x^{2}+6x.
\left(6x+1\right)\left(6x+1\right)
Whakatauwehea atu te kīanga pātahi 6x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(6x+1\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(36x^{2}+12x+1)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(36,12,1)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{36x^{2}}=6x
Kimihia te pūtakerua o te kīanga tau ārahi, 36x^{2}.
\left(6x+1\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
36x^{2}+12x+1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 36}}{2\times 36}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{144-4\times 36}}{2\times 36}
Pūrua 12.
x=\frac{-12±\sqrt{144-144}}{2\times 36}
Whakareatia -4 ki te 36.
x=\frac{-12±\sqrt{0}}{2\times 36}
Tāpiri 144 ki te -144.
x=\frac{-12±0}{2\times 36}
Tuhia te pūtakerua o te 0.
x=\frac{-12±0}{72}
Whakareatia 2 ki te 36.
36x^{2}+12x+1=36\left(x-\left(-\frac{1}{6}\right)\right)\left(x-\left(-\frac{1}{6}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{1}{6} mō te x_{1} me te -\frac{1}{6} mō te x_{2}.
36x^{2}+12x+1=36\left(x+\frac{1}{6}\right)\left(x+\frac{1}{6}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
36x^{2}+12x+1=36\times \frac{6x+1}{6}\left(x+\frac{1}{6}\right)
Tāpiri \frac{1}{6} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
36x^{2}+12x+1=36\times \frac{6x+1}{6}\times \frac{6x+1}{6}
Tāpiri \frac{1}{6} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
36x^{2}+12x+1=36\times \frac{\left(6x+1\right)\left(6x+1\right)}{6\times 6}
Whakareatia \frac{6x+1}{6} ki te \frac{6x+1}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
36x^{2}+12x+1=36\times \frac{\left(6x+1\right)\left(6x+1\right)}{36}
Whakareatia 6 ki te 6.
36x^{2}+12x+1=\left(6x+1\right)\left(6x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 36 i roto i te 36 me te 36.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}