Aromātai
\frac{17}{13}\approx 1.307692308
Tauwehe
\frac{17}{13} = 1\frac{4}{13} = 1.3076923076923077
Tohaina
Kua tāruatia ki te papatopenga
1+\frac{12}{3+4\times 9}
Whakareatia te 3 ki te 4, ka 12.
1+\frac{12}{3+36}
Whakareatia te 4 ki te 9, ka 36.
1+\frac{12}{39}
Tāpirihia te 3 ki te 36, ka 39.
1+\frac{4}{13}
Whakahekea te hautanga \frac{12}{39} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{13}{13}+\frac{4}{13}
Me tahuri te 1 ki te hautau \frac{13}{13}.
\frac{13+4}{13}
Tā te mea he rite te tauraro o \frac{13}{13} me \frac{4}{13}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{17}{13}
Tāpirihia te 13 ki te 4, ka 17.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}