Aromātai
\frac{25}{21}\approx 1.19047619
Tauwehe
\frac{5 ^ {2}}{3 \cdot 7} = 1\frac{4}{21} = 1.1904761904761905
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
1 + \frac { 2 } { 3 + \frac { 5 } { 1 - \frac { 1 } { 3 } } }
Tohaina
Kua tāruatia ki te papatopenga
1+\frac{2}{3+\frac{5}{\frac{3}{3}-\frac{1}{3}}}
Me tahuri te 1 ki te hautau \frac{3}{3}.
1+\frac{2}{3+\frac{5}{\frac{3-1}{3}}}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{1}{3}, me tango rāua mā te tango i ō raua taurunga.
1+\frac{2}{3+\frac{5}{\frac{2}{3}}}
Tangohia te 1 i te 3, ka 2.
1+\frac{2}{3+5\times \frac{3}{2}}
Whakawehe 5 ki te \frac{2}{3} mā te whakarea 5 ki te tau huripoki o \frac{2}{3}.
1+\frac{2}{3+\frac{5\times 3}{2}}
Tuhia te 5\times \frac{3}{2} hei hautanga kotahi.
1+\frac{2}{3+\frac{15}{2}}
Whakareatia te 5 ki te 3, ka 15.
1+\frac{2}{\frac{6}{2}+\frac{15}{2}}
Me tahuri te 3 ki te hautau \frac{6}{2}.
1+\frac{2}{\frac{6+15}{2}}
Tā te mea he rite te tauraro o \frac{6}{2} me \frac{15}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
1+\frac{2}{\frac{21}{2}}
Tāpirihia te 6 ki te 15, ka 21.
1+2\times \frac{2}{21}
Whakawehe 2 ki te \frac{21}{2} mā te whakarea 2 ki te tau huripoki o \frac{21}{2}.
1+\frac{2\times 2}{21}
Tuhia te 2\times \frac{2}{21} hei hautanga kotahi.
1+\frac{4}{21}
Whakareatia te 2 ki te 2, ka 4.
\frac{21}{21}+\frac{4}{21}
Me tahuri te 1 ki te hautau \frac{21}{21}.
\frac{21+4}{21}
Tā te mea he rite te tauraro o \frac{21}{21} me \frac{4}{21}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{25}{21}
Tāpirihia te 21 ki te 4, ka 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}