Whakaoti mō n
n=-1
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
1 + \frac { 1 } { n - 1 } = \frac { 1 } { n ^ { 2 } - n }
Tohaina
Kua tāruatia ki te papatopenga
n\left(n-1\right)+n=1
Tē taea kia ōrite te tāupe n ki tētahi o ngā uara 0,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te n\left(n-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o n-1,n^{2}-n.
n^{2}-n+n=1
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te n-1.
n^{2}=1
Pahekotia te -n me n, ka 0.
n^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
\left(n-1\right)\left(n+1\right)=0
Whakaarohia te n^{2}-1. Tuhia anō te n^{2}-1 hei n^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
n=1 n=-1
Hei kimi otinga whārite, me whakaoti te n-1=0 me te n+1=0.
n=-1
Tē taea kia ōrite te tāupe n ki 1.
n\left(n-1\right)+n=1
Tē taea kia ōrite te tāupe n ki tētahi o ngā uara 0,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te n\left(n-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o n-1,n^{2}-n.
n^{2}-n+n=1
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te n-1.
n^{2}=1
Pahekotia te -n me n, ka 0.
n=1 n=-1
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n=-1
Tē taea kia ōrite te tāupe n ki 1.
n\left(n-1\right)+n=1
Tē taea kia ōrite te tāupe n ki tētahi o ngā uara 0,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te n\left(n-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o n-1,n^{2}-n.
n^{2}-n+n=1
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te n-1.
n^{2}=1
Pahekotia te -n me n, ka 0.
n^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
n=\frac{0±\sqrt{0^{2}-4\left(-1\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-1\right)}}{2}
Pūrua 0.
n=\frac{0±\sqrt{4}}{2}
Whakareatia -4 ki te -1.
n=\frac{0±2}{2}
Tuhia te pūtakerua o te 4.
n=1
Nā, me whakaoti te whārite n=\frac{0±2}{2} ina he tāpiri te ±. Whakawehe 2 ki te 2.
n=-1
Nā, me whakaoti te whārite n=\frac{0±2}{2} ina he tango te ±. Whakawehe -2 ki te 2.
n=1 n=-1
Kua oti te whārite te whakatau.
n=-1
Tē taea kia ōrite te tāupe n ki 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}