Aromātai
\frac{133}{150}\approx 0.886666667
Tauwehe
\frac{7 \cdot 19}{2 \cdot 3 \cdot 5 ^ {2}} = 0.8866666666666667
Tohaina
Kua tāruatia ki te papatopenga
1+\frac{1}{5}\left(-\frac{3}{15}+\frac{5}{15}\right)+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Ko te maha noa iti rawa atu o 5 me 3 ko 15. Me tahuri -\frac{1}{5} me \frac{1}{3} ki te hautau me te tautūnga 15.
1+\frac{1}{5}\times \frac{-3+5}{15}+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Tā te mea he rite te tauraro o -\frac{3}{15} me \frac{5}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
1+\frac{1}{5}\times \frac{2}{15}+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Tāpirihia te -3 ki te 5, ka 2.
1+\frac{1\times 2}{5\times 15}+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Me whakarea te \frac{1}{5} ki te \frac{2}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
1+\frac{2}{75}+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 2}{5\times 15}.
\frac{75}{75}+\frac{2}{75}+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Me tahuri te 1 ki te hautau \frac{75}{75}.
\frac{75+2}{75}+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Tā te mea he rite te tauraro o \frac{75}{75} me \frac{2}{75}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{77}{75}+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Tāpirihia te 75 ki te 2, ka 77.
\frac{154}{150}+\frac{15}{150}-\frac{1}{5}-\frac{1}{25}
Ko te maha noa iti rawa atu o 75 me 10 ko 150. Me tahuri \frac{77}{75} me \frac{1}{10} ki te hautau me te tautūnga 150.
\frac{154+15}{150}-\frac{1}{5}-\frac{1}{25}
Tā te mea he rite te tauraro o \frac{154}{150} me \frac{15}{150}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{169}{150}-\frac{1}{5}-\frac{1}{25}
Tāpirihia te 154 ki te 15, ka 169.
\frac{169}{150}-\frac{30}{150}-\frac{1}{25}
Ko te maha noa iti rawa atu o 150 me 5 ko 150. Me tahuri \frac{169}{150} me \frac{1}{5} ki te hautau me te tautūnga 150.
\frac{169-30}{150}-\frac{1}{25}
Tā te mea he rite te tauraro o \frac{169}{150} me \frac{30}{150}, me tango rāua mā te tango i ō raua taurunga.
\frac{139}{150}-\frac{1}{25}
Tangohia te 30 i te 169, ka 139.
\frac{139}{150}-\frac{6}{150}
Ko te maha noa iti rawa atu o 150 me 25 ko 150. Me tahuri \frac{139}{150} me \frac{1}{25} ki te hautau me te tautūnga 150.
\frac{139-6}{150}
Tā te mea he rite te tauraro o \frac{139}{150} me \frac{6}{150}, me tango rāua mā te tango i ō raua taurunga.
\frac{133}{150}
Tangohia te 6 i te 139, ka 133.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}