Aromātai
\frac{10}{3}\approx 3.333333333
Tauwehe
\frac{2 \cdot 5}{3} = 3\frac{1}{3} = 3.3333333333333335
Pātaitai
Arithmetic
1 + \frac { 1 } { 1 - \frac { 1 } { 1 + \frac { 1 } { 1 + \frac { 1 } { 3 } } } }
Tohaina
Kua tāruatia ki te papatopenga
1+\frac{1}{1-\frac{1}{1+\frac{1}{\frac{3}{3}+\frac{1}{3}}}}
Me tahuri te 1 ki te hautau \frac{3}{3}.
1+\frac{1}{1-\frac{1}{1+\frac{1}{\frac{3+1}{3}}}}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
1+\frac{1}{1-\frac{1}{1+\frac{1}{\frac{4}{3}}}}
Tāpirihia te 3 ki te 1, ka 4.
1+\frac{1}{1-\frac{1}{1+1\times \frac{3}{4}}}
Whakawehe 1 ki te \frac{4}{3} mā te whakarea 1 ki te tau huripoki o \frac{4}{3}.
1+\frac{1}{1-\frac{1}{1+\frac{3}{4}}}
Whakareatia te 1 ki te \frac{3}{4}, ka \frac{3}{4}.
1+\frac{1}{1-\frac{1}{\frac{4}{4}+\frac{3}{4}}}
Me tahuri te 1 ki te hautau \frac{4}{4}.
1+\frac{1}{1-\frac{1}{\frac{4+3}{4}}}
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{3}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
1+\frac{1}{1-\frac{1}{\frac{7}{4}}}
Tāpirihia te 4 ki te 3, ka 7.
1+\frac{1}{1-1\times \frac{4}{7}}
Whakawehe 1 ki te \frac{7}{4} mā te whakarea 1 ki te tau huripoki o \frac{7}{4}.
1+\frac{1}{1-\frac{4}{7}}
Whakareatia te 1 ki te \frac{4}{7}, ka \frac{4}{7}.
1+\frac{1}{\frac{7}{7}-\frac{4}{7}}
Me tahuri te 1 ki te hautau \frac{7}{7}.
1+\frac{1}{\frac{7-4}{7}}
Tā te mea he rite te tauraro o \frac{7}{7} me \frac{4}{7}, me tango rāua mā te tango i ō raua taurunga.
1+\frac{1}{\frac{3}{7}}
Tangohia te 4 i te 7, ka 3.
1+1\times \frac{7}{3}
Whakawehe 1 ki te \frac{3}{7} mā te whakarea 1 ki te tau huripoki o \frac{3}{7}.
1+\frac{7}{3}
Whakareatia te 1 ki te \frac{7}{3}, ka \frac{7}{3}.
\frac{3}{3}+\frac{7}{3}
Me tahuri te 1 ki te hautau \frac{3}{3}.
\frac{3+7}{3}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{7}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{10}{3}
Tāpirihia te 3 ki te 7, ka 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}