Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
1+\frac{1}{1+\frac{3}{\frac{5}{5}+\frac{4}{5}}}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Me tahuri te 1 ki te hautau \frac{5}{5}.
1+\frac{1}{1+\frac{3}{\frac{5+4}{5}}}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{4}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
1+\frac{1}{1+\frac{3}{\frac{9}{5}}}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Tāpirihia te 5 ki te 4, ka 9.
1+\frac{1}{1+3\times \frac{5}{9}}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Whakawehe 3 ki te \frac{9}{5} mā te whakarea 3 ki te tau huripoki o \frac{9}{5}.
1+\frac{1}{1+\frac{3\times 5}{9}}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Tuhia te 3\times \frac{5}{9} hei hautanga kotahi.
1+\frac{1}{1+\frac{15}{9}}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Whakareatia te 3 ki te 5, ka 15.
1+\frac{1}{1+\frac{5}{3}}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Whakahekea te hautanga \frac{15}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
1+\frac{1}{\frac{3}{3}+\frac{5}{3}}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Me tahuri te 1 ki te hautau \frac{3}{3}.
1+\frac{1}{\frac{3+5}{3}}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Tā te mea he rite te tauraro o \frac{3}{3} me \frac{5}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
1+\frac{1}{\frac{8}{3}}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Tāpirihia te 3 ki te 5, ka 8.
1+1\times \frac{3}{8}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Whakawehe 1 ki te \frac{8}{3} mā te whakarea 1 ki te tau huripoki o \frac{8}{3}.
1+\frac{3}{8}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Whakareatia te 1 ki te \frac{3}{8}, ka \frac{3}{8}.
\frac{8}{8}+\frac{3}{8}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Me tahuri te 1 ki te hautau \frac{8}{8}.
\frac{8+3}{8}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Tā te mea he rite te tauraro o \frac{8}{8} me \frac{3}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{11}{8}=1+\frac{1}{1+\frac{3}{\frac{9}{3}}}
Tāpirihia te 8 ki te 3, ka 11.
\frac{11}{8}=1+\frac{1}{1+\frac{3\times 3}{9}}
Whakawehe 3 ki te \frac{9}{3} mā te whakarea 3 ki te tau huripoki o \frac{9}{3}.
\frac{11}{8}=1+\frac{1}{1+\frac{9}{9}}
Whakareatia te 3 ki te 3, ka 9.
\frac{11}{8}=1+\frac{1}{1+1}
Whakawehea te 9 ki te 9, kia riro ko 1.
\frac{11}{8}=1+\frac{1}{2}
Tāpirihia te 1 ki te 1, ka 2.
\frac{11}{8}=\frac{2}{2}+\frac{1}{2}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{11}{8}=\frac{2+1}{2}
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{11}{8}=\frac{3}{2}
Tāpirihia te 2 ki te 1, ka 3.
\frac{11}{8}=\frac{12}{8}
Ko te maha noa iti rawa atu o 8 me 2 ko 8. Me tahuri \frac{11}{8} me \frac{3}{2} ki te hautau me te tautūnga 8.
\text{false}
Whakatauritea te \frac{11}{8} me te \frac{12}{8}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}