Whakaoti mō x
x<-13
Graph
Tohaina
Kua tāruatia ki te papatopenga
1+\left(2x^{2}-x-\left(1-x\right)-2x^{2}\right)^{3}>x+13
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x-\frac{1}{2}.
1+\left(2x^{2}-x-1+x-2x^{2}\right)^{3}>x+13
Hei kimi i te tauaro o 1-x, kimihia te tauaro o ia taurangi.
1+\left(2x^{2}-1-2x^{2}\right)^{3}>x+13
Pahekotia te -x me x, ka 0.
1+\left(-1\right)^{3}>x+13
Pahekotia te 2x^{2} me -2x^{2}, ka 0.
1-1>x+13
Tātaihia te -1 mā te pū o 3, kia riro ko -1.
0>x+13
Tangohia te 1 i te 1, ka 0.
x+13<0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa. Ka huri tēnei i te aronga o te tohu.
x<-13
Tangohia te 13 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}