Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2a+b\right)\left(2a-b\right)-2\left(a-b\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 1 ki te 2a+b.
\left(2a\right)^{2}-b^{2}-2\left(a-b\right)^{2}
Whakaarohia te \left(2a+b\right)\left(2a-b\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}a^{2}-b^{2}-2\left(a-b\right)^{2}
Whakarohaina te \left(2a\right)^{2}.
4a^{2}-b^{2}-2\left(a-b\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4a^{2}-b^{2}-2\left(a^{2}-2ab+b^{2}\right)
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-b\right)^{2}.
4a^{2}-b^{2}-2a^{2}+4ab-2b^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te a^{2}-2ab+b^{2}.
2a^{2}-b^{2}+4ab-2b^{2}
Pahekotia te 4a^{2} me -2a^{2}, ka 2a^{2}.
2a^{2}-3b^{2}+4ab
Pahekotia te -b^{2} me -2b^{2}, ka -3b^{2}.
\left(2a+b\right)\left(2a-b\right)-2\left(a-b\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 1 ki te 2a+b.
\left(2a\right)^{2}-b^{2}-2\left(a-b\right)^{2}
Whakaarohia te \left(2a+b\right)\left(2a-b\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}a^{2}-b^{2}-2\left(a-b\right)^{2}
Whakarohaina te \left(2a\right)^{2}.
4a^{2}-b^{2}-2\left(a-b\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4a^{2}-b^{2}-2\left(a^{2}-2ab+b^{2}\right)
Whakamahia te ture huarua \left(p-q\right)^{2}=p^{2}-2pq+q^{2} hei whakaroha \left(a-b\right)^{2}.
4a^{2}-b^{2}-2a^{2}+4ab-2b^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te a^{2}-2ab+b^{2}.
2a^{2}-b^{2}+4ab-2b^{2}
Pahekotia te 4a^{2} me -2a^{2}, ka 2a^{2}.
2a^{2}-3b^{2}+4ab
Pahekotia te -b^{2} me -2b^{2}, ka -3b^{2}.