Whakaoti mō x
x = -\frac{11}{2} = -5\frac{1}{2} = -5.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
5\left(1\times 6+5\right)+12x=-15\times \frac{11}{15}
Me whakarea ngā taha e rua o te whārite ki te 30, arā, te tauraro pātahi he tino iti rawa te kitea o 6,5,-2.
5\left(6+5\right)+12x=-15\times \frac{11}{15}
Whakareatia te 1 ki te 6, ka 6.
5\times 11+12x=-15\times \frac{11}{15}
Tāpirihia te 6 ki te 5, ka 11.
55+12x=-15\times \frac{11}{15}
Whakareatia te 5 ki te 11, ka 55.
55+12x=-11
Whakareatia -15 ki te \frac{11}{15}.
12x=-11-55
Tangohia te 55 mai i ngā taha e rua.
12x=-66
Tangohia te 55 i te -11, ka -66.
x=\frac{-66}{12}
Whakawehea ngā taha e rua ki te 12.
x=-\frac{11}{2}
Whakahekea te hautanga \frac{-66}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}