09 - 70 \% \times 125 X \times 63 \% \div ( 30 \% \times 125 X + 5 \% \times 125 X ) =
Aromātai
-\frac{63}{50}=-1.26
Tauwehe
-\frac{63}{50} = -1\frac{13}{50} = -1.26
Tohaina
Kua tāruatia ki te papatopenga
0-\frac{\frac{70}{100}\times 125X\times \frac{63}{100}}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Whakareatia te 0 ki te 9, ka 0.
0-\frac{\frac{7}{10}\times 125X\times \frac{63}{100}}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Whakahekea te hautanga \frac{70}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
0-\frac{\frac{7\times 125}{10}X\times \frac{63}{100}}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Tuhia te \frac{7}{10}\times 125 hei hautanga kotahi.
0-\frac{\frac{875}{10}X\times \frac{63}{100}}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Whakareatia te 7 ki te 125, ka 875.
0-\frac{\frac{175}{2}X\times \frac{63}{100}}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Whakahekea te hautanga \frac{875}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
0-\frac{\frac{175\times 63}{2\times 100}X}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Me whakarea te \frac{175}{2} ki te \frac{63}{100} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
0-\frac{\frac{11025}{200}X}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Mahia ngā whakarea i roto i te hautanga \frac{175\times 63}{2\times 100}.
0-\frac{\frac{441}{8}X}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Whakahekea te hautanga \frac{11025}{200} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
0-\frac{\frac{441}{8}X}{\frac{3}{10}\times 125X+\frac{5}{100}\times 125X}
Whakahekea te hautanga \frac{30}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
0-\frac{\frac{441}{8}X}{\frac{3\times 125}{10}X+\frac{5}{100}\times 125X}
Tuhia te \frac{3}{10}\times 125 hei hautanga kotahi.
0-\frac{\frac{441}{8}X}{\frac{375}{10}X+\frac{5}{100}\times 125X}
Whakareatia te 3 ki te 125, ka 375.
0-\frac{\frac{441}{8}X}{\frac{75}{2}X+\frac{5}{100}\times 125X}
Whakahekea te hautanga \frac{375}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
0-\frac{\frac{441}{8}X}{\frac{75}{2}X+\frac{1}{20}\times 125X}
Whakahekea te hautanga \frac{5}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
0-\frac{\frac{441}{8}X}{\frac{75}{2}X+\frac{125}{20}X}
Whakareatia te \frac{1}{20} ki te 125, ka \frac{125}{20}.
0-\frac{\frac{441}{8}X}{\frac{75}{2}X+\frac{25}{4}X}
Whakahekea te hautanga \frac{125}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
0-\frac{\frac{441}{8}X}{\frac{175}{4}X}
Pahekotia te \frac{75}{2}X me \frac{25}{4}X, ka \frac{175}{4}X.
0-\frac{\frac{441}{8}}{\frac{175}{4}}
Me whakakore tahi te X i te taurunga me te tauraro.
0-\frac{441}{8}\times \frac{4}{175}
Whakawehe \frac{441}{8} ki te \frac{175}{4} mā te whakarea \frac{441}{8} ki te tau huripoki o \frac{175}{4}.
0-\frac{441\times 4}{8\times 175}
Me whakarea te \frac{441}{8} ki te \frac{4}{175} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
0-\frac{1764}{1400}
Mahia ngā whakarea i roto i te hautanga \frac{441\times 4}{8\times 175}.
0-\frac{63}{50}
Whakahekea te hautanga \frac{1764}{1400} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 28.
-\frac{63}{50}
Tangohia te \frac{63}{50} i te 0, ka -\frac{63}{50}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}