Whakaoti mō x
x=-10
Graph
Tohaina
Kua tāruatia ki te papatopenga
0\left(x+45\right)\times 8=\left(x+45-35\right)\times 12
Whakareatia te 0 ki te 85, ka 0.
0\left(x+45\right)=\left(x+45-35\right)\times 12
Whakareatia te 0 ki te 8, ka 0.
0=\left(x+45-35\right)\times 12
Ko te tau i whakarea ki te kore ka hua ko te kore.
0=\left(x+10\right)\times 12
Tangohia te 35 i te 45, ka 10.
0=12x+120
Whakamahia te āhuatanga tohatoha hei whakarea te x+10 ki te 12.
12x+120=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
12x=-120
Tangohia te 120 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-120}{12}
Whakawehea ngā taha e rua ki te 12.
x=-10
Whakawehea te -120 ki te 12, kia riro ko -10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}