Aromātai
\frac{\sqrt{273}}{42}\approx 0.393397896
Tohaina
Kua tāruatia ki te papatopenga
0+10\sqrt{\frac{13}{8400}}
Whakareatia te 0 ki te 802, ka 0.
0+10\times \frac{\sqrt{13}}{\sqrt{8400}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{13}{8400}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{13}}{\sqrt{8400}}.
0+10\times \frac{\sqrt{13}}{20\sqrt{21}}
Tauwehea te 8400=20^{2}\times 21. Tuhia anō te pūtake rua o te hua \sqrt{20^{2}\times 21} hei hua o ngā pūtake rua \sqrt{20^{2}}\sqrt{21}. Tuhia te pūtakerua o te 20^{2}.
0+10\times \frac{\sqrt{13}\sqrt{21}}{20\left(\sqrt{21}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{13}}{20\sqrt{21}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{21}.
0+10\times \frac{\sqrt{13}\sqrt{21}}{20\times 21}
Ko te pūrua o \sqrt{21} ko 21.
0+10\times \frac{\sqrt{273}}{20\times 21}
Hei whakarea \sqrt{13} me \sqrt{21}, whakareatia ngā tau i raro i te pūtake rua.
0+10\times \frac{\sqrt{273}}{420}
Whakareatia te 20 ki te 21, ka 420.
0+\frac{\sqrt{273}}{42}
Whakakorea atu te tauwehe pūnoa nui rawa 420 i roto i te 10 me te 420.
\frac{\sqrt{273}}{42}
Ko te tau i tāpiria he kore ka hua koia tonu.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}