Aromātai
\frac{114}{7}\approx 16.285714286
Tauwehe
\frac{2 \cdot 3 \cdot 19}{7} = 16\frac{2}{7} = 16.285714285714285
Tohaina
Kua tāruatia ki te papatopenga
0\times \frac{2\times 7+1}{7}+\frac{3}{4}\times \frac{7\times 7+3}{7}+75\times \frac{1}{7}
Whakareatia te 0 ki te 75, ka 0.
0\times \frac{14+1}{7}+\frac{3}{4}\times \frac{7\times 7+3}{7}+75\times \frac{1}{7}
Whakareatia te 2 ki te 7, ka 14.
0\times \frac{15}{7}+\frac{3}{4}\times \frac{7\times 7+3}{7}+75\times \frac{1}{7}
Tāpirihia te 14 ki te 1, ka 15.
0+\frac{3}{4}\times \frac{7\times 7+3}{7}+75\times \frac{1}{7}
Whakareatia te 0 ki te \frac{15}{7}, ka 0.
0+\frac{3}{4}\times \frac{49+3}{7}+75\times \frac{1}{7}
Whakareatia te 7 ki te 7, ka 49.
0+\frac{3}{4}\times \frac{52}{7}+75\times \frac{1}{7}
Tāpirihia te 49 ki te 3, ka 52.
0+\frac{3\times 52}{4\times 7}+75\times \frac{1}{7}
Me whakarea te \frac{3}{4} ki te \frac{52}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
0+\frac{156}{28}+75\times \frac{1}{7}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 52}{4\times 7}.
0+\frac{39}{7}+75\times \frac{1}{7}
Whakahekea te hautanga \frac{156}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{39}{7}+75\times \frac{1}{7}
Tāpirihia te 0 ki te \frac{39}{7}, ka \frac{39}{7}.
\frac{39}{7}+\frac{75}{7}
Whakareatia te 75 ki te \frac{1}{7}, ka \frac{75}{7}.
\frac{39+75}{7}
Tā te mea he rite te tauraro o \frac{39}{7} me \frac{75}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{114}{7}
Tāpirihia te 39 ki te 75, ka 114.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}