Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Tohaina

0t-\frac{\frac{160}{3}\times 5\times 10^{-4}}{4\times 10^{-3}}t^{2}=-204
Whakareatia te 0 ki te 6, ka 0.
0-\frac{\frac{160}{3}\times 5\times 10^{-4}}{4\times 10^{-3}}t^{2}=-204
Ko te tau i whakarea ki te kore ka hua ko te kore.
0-\frac{5\times \frac{160}{3}}{4\times 10^{1}}t^{2}=-204
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
0-\frac{\frac{800}{3}}{4\times 10^{1}}t^{2}=-204
Whakareatia te 5 ki te \frac{160}{3}, ka \frac{800}{3}.
0-\frac{\frac{800}{3}}{4\times 10}t^{2}=-204
Tātaihia te 10 mā te pū o 1, kia riro ko 10.
0-\frac{\frac{800}{3}}{40}t^{2}=-204
Whakareatia te 4 ki te 10, ka 40.
0-\frac{800}{3\times 40}t^{2}=-204
Tuhia te \frac{\frac{800}{3}}{40} hei hautanga kotahi.
0-\frac{800}{120}t^{2}=-204
Whakareatia te 3 ki te 40, ka 120.
0-\frac{20}{3}t^{2}=-204
Whakahekea te hautanga \frac{800}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 40.
-\frac{20}{3}t^{2}=-204
Ko te tau i tāpiria he kore ka hua koia tonu.
t^{2}=-204\left(-\frac{3}{20}\right)
Me whakarea ngā taha e rua ki te -\frac{3}{20}, te tau utu o -\frac{20}{3}.
t^{2}=\frac{153}{5}
Whakareatia te -204 ki te -\frac{3}{20}, ka \frac{153}{5}.
t=\frac{3\sqrt{85}}{5} t=-\frac{3\sqrt{85}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
0t-\frac{\frac{160}{3}\times 5\times 10^{-4}}{4\times 10^{-3}}t^{2}=-204
Whakareatia te 0 ki te 6, ka 0.
0-\frac{\frac{160}{3}\times 5\times 10^{-4}}{4\times 10^{-3}}t^{2}=-204
Ko te tau i whakarea ki te kore ka hua ko te kore.
0-\frac{5\times \frac{160}{3}}{4\times 10^{1}}t^{2}=-204
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
0-\frac{\frac{800}{3}}{4\times 10^{1}}t^{2}=-204
Whakareatia te 5 ki te \frac{160}{3}, ka \frac{800}{3}.
0-\frac{\frac{800}{3}}{4\times 10}t^{2}=-204
Tātaihia te 10 mā te pū o 1, kia riro ko 10.
0-\frac{\frac{800}{3}}{40}t^{2}=-204
Whakareatia te 4 ki te 10, ka 40.
0-\frac{800}{3\times 40}t^{2}=-204
Tuhia te \frac{\frac{800}{3}}{40} hei hautanga kotahi.
0-\frac{800}{120}t^{2}=-204
Whakareatia te 3 ki te 40, ka 120.
0-\frac{20}{3}t^{2}=-204
Whakahekea te hautanga \frac{800}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 40.
-\frac{20}{3}t^{2}=-204
Ko te tau i tāpiria he kore ka hua koia tonu.
-\frac{20}{3}t^{2}+204=0
Me tāpiri te 204 ki ngā taha e rua.
t=\frac{0±\sqrt{0^{2}-4\left(-\frac{20}{3}\right)\times 204}}{2\left(-\frac{20}{3}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{20}{3} mō a, 0 mō b, me 204 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-\frac{20}{3}\right)\times 204}}{2\left(-\frac{20}{3}\right)}
Pūrua 0.
t=\frac{0±\sqrt{\frac{80}{3}\times 204}}{2\left(-\frac{20}{3}\right)}
Whakareatia -4 ki te -\frac{20}{3}.
t=\frac{0±\sqrt{5440}}{2\left(-\frac{20}{3}\right)}
Whakareatia \frac{80}{3} ki te 204.
t=\frac{0±8\sqrt{85}}{2\left(-\frac{20}{3}\right)}
Tuhia te pūtakerua o te 5440.
t=\frac{0±8\sqrt{85}}{-\frac{40}{3}}
Whakareatia 2 ki te -\frac{20}{3}.
t=-\frac{3\sqrt{85}}{5}
Nā, me whakaoti te whārite t=\frac{0±8\sqrt{85}}{-\frac{40}{3}} ina he tāpiri te ±.
t=\frac{3\sqrt{85}}{5}
Nā, me whakaoti te whārite t=\frac{0±8\sqrt{85}}{-\frac{40}{3}} ina he tango te ±.
t=-\frac{3\sqrt{85}}{5} t=\frac{3\sqrt{85}}{5}
Kua oti te whārite te whakatau.