Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

0\sqrt{0\times 0\times 4+\frac{1}{6}}\sqrt{144}
Whakareatia te 0 ki te 5, ka 0.
0\sqrt{0\times 4+\frac{1}{6}}\sqrt{144}
Whakareatia te 0 ki te 0, ka 0.
0\sqrt{0+\frac{1}{6}}\sqrt{144}
Whakareatia te 0 ki te 4, ka 0.
0\sqrt{\frac{1}{6}}\sqrt{144}
Tāpirihia te 0 ki te \frac{1}{6}, ka \frac{1}{6}.
0\times \frac{\sqrt{1}}{\sqrt{6}}\sqrt{144}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{6}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{6}}.
0\times \frac{1}{\sqrt{6}}\sqrt{144}
Tātaitia te pūtakerua o 1 kia tae ki 1.
0\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}\sqrt{144}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
0\times \frac{\sqrt{6}}{6}\sqrt{144}
Ko te pūrua o \sqrt{6} ko 6.
0\times \frac{\sqrt{6}}{6}\times 12
Tātaitia te pūtakerua o 144 kia tae ki 12.
0\times \frac{\sqrt{6}}{6}
Whakareatia te 0 ki te 12, ka 0.
0
Ko te tau i whakarea ki te kore ka hua ko te kore.