Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
0\sqrt{0\times 0\times 4+\frac{1}{6}}\sqrt{144}
Whakareatia te 0 ki te 5, ka 0.
0\sqrt{0\times 4+\frac{1}{6}}\sqrt{144}
Whakareatia te 0 ki te 0, ka 0.
0\sqrt{0+\frac{1}{6}}\sqrt{144}
Whakareatia te 0 ki te 4, ka 0.
0\sqrt{\frac{1}{6}}\sqrt{144}
Tāpirihia te 0 ki te \frac{1}{6}, ka \frac{1}{6}.
0\times \frac{\sqrt{1}}{\sqrt{6}}\sqrt{144}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{6}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{6}}.
0\times \frac{1}{\sqrt{6}}\sqrt{144}
Tātaitia te pūtakerua o 1 kia tae ki 1.
0\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}\sqrt{144}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
0\times \frac{\sqrt{6}}{6}\sqrt{144}
Ko te pūrua o \sqrt{6} ko 6.
0\times \frac{\sqrt{6}}{6}\times 12
Tātaitia te pūtakerua o 144 kia tae ki 12.
0\times \frac{\sqrt{6}}{6}
Whakareatia te 0 ki te 12, ka 0.
0
Ko te tau i whakarea ki te kore ka hua ko te kore.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}