Aromātai
0
Tauwehe
0
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
05 \cdot \sqrt { 12 } \cdot \sqrt { 6 } \cdot \sqrt { 2 } + 02
Tohaina
Kua tāruatia ki te papatopenga
0\sqrt{12}\sqrt{6}\sqrt{2}+0
Whakareatia te 0 ki te 5, ka 0. Whakareatia te 0 ki te 2, ka 0.
0\sqrt{6}\sqrt{2}\sqrt{6}\sqrt{2}+0
Tauwehea te 12=6\times 2. Tuhia anō te pūtake rua o te hua \sqrt{6\times 2} hei hua o ngā pūtake rua \sqrt{6}\sqrt{2}.
0\times 6\sqrt{2}\sqrt{2}+0
Whakareatia te \sqrt{6} ki te \sqrt{6}, ka 6.
0\times 6\times 2+0
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
0\times 2+0
Whakareatia te 0 ki te 6, ka 0.
0+0
Whakareatia te 0 ki te 2, ka 0.
0
Tāpirihia te 0 ki te 0, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}