Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
0\left(\frac{2390}{28}-1881+588\right)
Whakareatia te 0 ki te 3, ka 0.
0\left(\frac{1195}{14}-1881+588\right)
Whakahekea te hautanga \frac{2390}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
0\left(\frac{1195}{14}-\frac{26334}{14}+588\right)
Me tahuri te 1881 ki te hautau \frac{26334}{14}.
0\left(\frac{1195-26334}{14}+588\right)
Tā te mea he rite te tauraro o \frac{1195}{14} me \frac{26334}{14}, me tango rāua mā te tango i ō raua taurunga.
0\left(-\frac{25139}{14}+588\right)
Tangohia te 26334 i te 1195, ka -25139.
0\left(-\frac{25139}{14}+\frac{8232}{14}\right)
Me tahuri te 588 ki te hautau \frac{8232}{14}.
0\times \frac{-25139+8232}{14}
Tā te mea he rite te tauraro o -\frac{25139}{14} me \frac{8232}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
0\left(-\frac{16907}{14}\right)
Tāpirihia te -25139 ki te 8232, ka -16907.
0
Whakareatia te 0 ki te -\frac{16907}{14}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}