03 \cdot ( 2392 : ( 28 - 1881 + 588 )
Aromātai
-\frac{312}{55}\approx -5.672727273
Tauwehe
-\frac{312}{55} = -5\frac{37}{55} = -5.672727272727273
Tohaina
Kua tāruatia ki te papatopenga
3\times \frac{2392}{-1853+588}
Tangohia te 1881 i te 28, ka -1853.
3\times \frac{2392}{-1265}
Tāpirihia te -1853 ki te 588, ka -1265.
3\left(-\frac{104}{55}\right)
Whakahekea te hautanga \frac{2392}{-1265} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 23.
\frac{3\left(-104\right)}{55}
Tuhia te 3\left(-\frac{104}{55}\right) hei hautanga kotahi.
\frac{-312}{55}
Whakareatia te 3 ki te -104, ka -312.
-\frac{312}{55}
Ka taea te hautanga \frac{-312}{55} te tuhi anō ko -\frac{312}{55} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}