Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

0y+3y-\frac{1}{5}y
Whakareatia te 0 ki te 2, ka 0.
0+3y-\frac{1}{5}y
Ko te tau i whakarea ki te kore ka hua ko te kore.
0+\frac{14}{5}y
Pahekotia te 3y me -\frac{1}{5}y, ka \frac{14}{5}y.
\frac{14}{5}y
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\mathrm{d}}{\mathrm{d}y}(0y+3y-\frac{1}{5}y)
Whakareatia te 0 ki te 2, ka 0.
\frac{\mathrm{d}}{\mathrm{d}y}(0+3y-\frac{1}{5}y)
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}y}(0+\frac{14}{5}y)
Pahekotia te 3y me -\frac{1}{5}y, ka \frac{14}{5}y.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{14}{5}y)
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{14}{5}y^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{14}{5}y^{0}
Tango 1 mai i 1.
\frac{14}{5}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{14}{5}
Mō tētahi kupu t, t\times 1=t me 1t=t.