Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
0\sqrt{\frac{95\times 10^{-6}\left(3000-1205\right)\times 981}{1205}\times 513^{0\times 6}}
Whakareatia te 0 ki te 27, ka 0.
0\sqrt{\frac{95\times \frac{1}{1000000}\left(3000-1205\right)\times 981}{1205}\times 513^{0\times 6}}
Tātaihia te 10 mā te pū o -6, kia riro ko \frac{1}{1000000}.
0\sqrt{\frac{\frac{19}{200000}\left(3000-1205\right)\times 981}{1205}\times 513^{0\times 6}}
Whakareatia te 95 ki te \frac{1}{1000000}, ka \frac{19}{200000}.
0\sqrt{\frac{\frac{19}{200000}\times 1795\times 981}{1205}\times 513^{0\times 6}}
Tangohia te 1205 i te 3000, ka 1795.
0\sqrt{\frac{\frac{6821}{40000}\times 981}{1205}\times 513^{0\times 6}}
Whakareatia te \frac{19}{200000} ki te 1795, ka \frac{6821}{40000}.
0\sqrt{\frac{\frac{6691401}{40000}}{1205}\times 513^{0\times 6}}
Whakareatia te \frac{6821}{40000} ki te 981, ka \frac{6691401}{40000}.
0\sqrt{\frac{6691401}{40000\times 1205}\times 513^{0\times 6}}
Tuhia te \frac{\frac{6691401}{40000}}{1205} hei hautanga kotahi.
0\sqrt{\frac{6691401}{48200000}\times 513^{0\times 6}}
Whakareatia te 40000 ki te 1205, ka 48200000.
0\sqrt{\frac{6691401}{48200000}\times 513^{0}}
Whakareatia te 0 ki te 6, ka 0.
0\sqrt{\frac{6691401}{48200000}\times 1}
Tātaihia te 513 mā te pū o 0, kia riro ko 1.
0\sqrt{\frac{6691401}{48200000}}
Whakareatia te \frac{6691401}{48200000} ki te 1, ka \frac{6691401}{48200000}.
0\times \frac{\sqrt{6691401}}{\sqrt{48200000}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{6691401}{48200000}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{6691401}}{\sqrt{48200000}}.
0\times \frac{3\sqrt{743489}}{\sqrt{48200000}}
Tauwehea te 6691401=3^{2}\times 743489. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 743489} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{743489}. Tuhia te pūtakerua o te 3^{2}.
0\times \frac{3\sqrt{743489}}{200\sqrt{1205}}
Tauwehea te 48200000=200^{2}\times 1205. Tuhia anō te pūtake rua o te hua \sqrt{200^{2}\times 1205} hei hua o ngā pūtake rua \sqrt{200^{2}}\sqrt{1205}. Tuhia te pūtakerua o te 200^{2}.
0\times \frac{3\sqrt{743489}\sqrt{1205}}{200\left(\sqrt{1205}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\sqrt{743489}}{200\sqrt{1205}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{1205}.
0\times \frac{3\sqrt{743489}\sqrt{1205}}{200\times 1205}
Ko te pūrua o \sqrt{1205} ko 1205.
0\times \frac{3\sqrt{895904245}}{200\times 1205}
Hei whakarea \sqrt{743489} me \sqrt{1205}, whakareatia ngā tau i raro i te pūtake rua.
0\times \frac{3\sqrt{895904245}}{241000}
Whakareatia te 200 ki te 1205, ka 241000.
0
Ko te tau i whakarea ki te kore ka hua ko te kore.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}