Whakaoti mō x
x=-1.3
Graph
Tohaina
Kua tāruatia ki te papatopenga
0x+0.75=2.5x+4
Whakareatia te 0 ki te 25, ka 0.
0+0.75=2.5x+4
Ko te tau i whakarea ki te kore ka hua ko te kore.
0.75=2.5x+4
Tāpirihia te 0 ki te 0.75, ka 0.75.
2.5x+4=0.75
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2.5x=0.75-4
Tangohia te 4 mai i ngā taha e rua.
2.5x=-3.25
Tangohia te 4 i te 0.75, ka -3.25.
x=\frac{-3.25}{2.5}
Whakawehea ngā taha e rua ki te 2.5.
x=\frac{-325}{250}
Whakarohaina te \frac{-3.25}{2.5} mā te whakarea i te taurunga me te tauraro ki te 100.
x=-\frac{13}{10}
Whakahekea te hautanga \frac{-325}{250} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}