Whakaoti mō x
x = \frac{143}{12} = 11\frac{11}{12} \approx 11.916666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
0x+12=155-12x
Whakareatia te 0 ki te 25, ka 0.
0+12=155-12x
Ko te tau i whakarea ki te kore ka hua ko te kore.
12=155-12x
Tāpirihia te 0 ki te 12, ka 12.
155-12x=12
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-12x=12-155
Tangohia te 155 mai i ngā taha e rua.
-12x=-143
Tangohia te 155 i te 12, ka -143.
x=\frac{-143}{-12}
Whakawehea ngā taha e rua ki te -12.
x=\frac{143}{12}
Ka taea te hautanga \frac{-143}{-12} te whakamāmā ki te \frac{143}{12} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}