Aromātai
-\frac{8127}{5}=-1625.4
Tauwehe
-\frac{8127}{5} = -1625\frac{2}{5} = -1625.4
Tohaina
Kua tāruatia ki te papatopenga
0-\frac{4}{10}-1625
Whakareatia te 0 ki te 2, ka 0.
0-\frac{2}{5}-1625
Whakahekea te hautanga \frac{4}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{2}{5}-1625
Tangohia te \frac{2}{5} i te 0, ka -\frac{2}{5}.
-\frac{2}{5}-\frac{8125}{5}
Me tahuri te 1625 ki te hautau \frac{8125}{5}.
\frac{-2-8125}{5}
Tā te mea he rite te tauraro o -\frac{2}{5} me \frac{8125}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{8127}{5}
Tangohia te 8125 i te -2, ka -8127.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}