Whakaoti mō x
x=20
Graph
Tohaina
Kua tāruatia ki te papatopenga
0+40-x=x
Whakareatia te 0 ki te 2, ka 0.
40-x=x
Tāpirihia te 0 ki te 40, ka 40.
40-x-x=0
Tangohia te x mai i ngā taha e rua.
40-2x=0
Pahekotia te -x me -x, ka -2x.
-2x=-40
Tangohia te 40 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-40}{-2}
Whakawehea ngā taha e rua ki te -2.
x=20
Whakawehea te -40 ki te -2, kia riro ko 20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}