Whakaoti mō x
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
0=\frac{x}{2\sqrt{273\times 307}}
Whakareatia te 0 ki te 16, ka 0.
0=\frac{x}{2\sqrt{83811}}
Whakareatia te 273 ki te 307, ka 83811.
0=\frac{x\sqrt{83811}}{2\left(\sqrt{83811}\right)^{2}}
Whakangāwaritia te tauraro o \frac{x}{2\sqrt{83811}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{83811}.
0=\frac{x\sqrt{83811}}{2\times 83811}
Ko te pūrua o \sqrt{83811} ko 83811.
0=\frac{x\sqrt{83811}}{167622}
Whakareatia te 2 ki te 83811, ka 167622.
\frac{x\sqrt{83811}}{167622}=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x\sqrt{83811}=0
Me whakarea ngā taha e rua ki te 167622. Ko te tau i whakarea ki te kore ka hua ko te kore.
\sqrt{83811}x=0
He hanga arowhānui tō te whārite.
x=0
Whakawehe 0 ki te \sqrt{83811}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}