Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
0\sqrt{225000+100000-125000}
Whakareatia te 0 ki te 15, ka 0.
0\sqrt{325000-125000}
Tāpirihia te 225000 ki te 100000, ka 325000.
0\sqrt{200000}
Tangohia te 125000 i te 325000, ka 200000.
0\times 200\sqrt{5}
Tauwehea te 200000=200^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{200^{2}\times 5} hei hua o ngā pūtake rua \sqrt{200^{2}}\sqrt{5}. Tuhia te pūtakerua o te 200^{2}.
0\sqrt{5}
Whakareatia te 0 ki te 200, ka 0.
0
Ko te tau i whakarea ki te kore ka hua ko te kore.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}