Whakaoti mō x
x=\frac{1000\sqrt{249}\left(2y-1\right)}{y}
y\neq 0
Whakaoti mō y
y=\frac{249000}{-\sqrt{249}x+498000}
x\neq 2000\sqrt{249}
Graph
Pātaitai
Linear Equation
01=2y( \frac{ 1-01 }{ 1+01 } - \frac{ x }{ \sqrt{ 996 \times { 10 }^{ 6 } } } )-1
Tohaina
Kua tāruatia ki te papatopenga
0=2y\left(\frac{1-0\times 1}{1+0\times 1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
Whakareatia te 0 ki te 1, ka 0.
0=2y\left(\frac{1-0}{1+0\times 1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
Whakareatia te 0 ki te 1, ka 0.
0=2y\left(\frac{1}{1+0\times 1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
Tangohia te 0 i te 1, ka 1.
0=2y\left(\frac{1}{1+0}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
Whakareatia te 0 ki te 1, ka 0.
0=2y\left(\frac{1}{1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
Tāpirihia te 1 ki te 0, ka 1.
0=2y\left(1-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
0=2y\left(1-\frac{x}{\sqrt{996\times 1000000}}\right)-1
Tātaihia te 10 mā te pū o 6, kia riro ko 1000000.
0=2y\left(1-\frac{x}{\sqrt{996000000}}\right)-1
Whakareatia te 996 ki te 1000000, ka 996000000.
0=2y\left(1-\frac{x}{2000\sqrt{249}}\right)-1
Tauwehea te 996000000=2000^{2}\times 249. Tuhia anō te pūtake rua o te hua \sqrt{2000^{2}\times 249} hei hua o ngā pūtake rua \sqrt{2000^{2}}\sqrt{249}. Tuhia te pūtakerua o te 2000^{2}.
0=2y\left(1-\frac{x\sqrt{249}}{2000\left(\sqrt{249}\right)^{2}}\right)-1
Whakangāwaritia te tauraro o \frac{x}{2000\sqrt{249}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{249}.
0=2y\left(1-\frac{x\sqrt{249}}{2000\times 249}\right)-1
Ko te pūrua o \sqrt{249} ko 249.
0=2y\left(1-\frac{x\sqrt{249}}{498000}\right)-1
Whakareatia te 2000 ki te 249, ka 498000.
0=2y+2y\left(-\frac{x\sqrt{249}}{498000}\right)-1
Whakamahia te āhuatanga tohatoha hei whakarea te 2y ki te 1-\frac{x\sqrt{249}}{498000}.
0=2y+\frac{x\sqrt{249}}{-249000}y-1
Whakakorea atu te tauwehe pūnoa nui rawa 498000 i roto i te 2 me te 498000.
0=2y+\frac{x\sqrt{249}y}{-249000}-1
Tuhia te \frac{x\sqrt{249}}{-249000}y hei hautanga kotahi.
2y+\frac{x\sqrt{249}y}{-249000}-1=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{x\sqrt{249}y}{-249000}-1=-2y
Tangohia te 2y mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{x\sqrt{249}y}{-249000}=-2y+1
Me tāpiri te 1 ki ngā taha e rua.
x\sqrt{249}y=498000y-249000
Whakareatia ngā taha e rua o te whārite ki te -249000.
\sqrt{249}yx=498000y-249000
He hanga arowhānui tō te whārite.
\frac{\sqrt{249}yx}{\sqrt{249}y}=\frac{498000y-249000}{\sqrt{249}y}
Whakawehea ngā taha e rua ki te \sqrt{249}y.
x=\frac{498000y-249000}{\sqrt{249}y}
Mā te whakawehe ki te \sqrt{249}y ka wetekia te whakareanga ki te \sqrt{249}y.
x=\frac{1000\sqrt{249}\left(2y-1\right)}{y}
Whakawehe 498000y-249000 ki te \sqrt{249}y.
0=2y\left(\frac{1-0\times 1}{1+0\times 1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
Whakareatia te 0 ki te 1, ka 0.
0=2y\left(\frac{1-0}{1+0\times 1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
Whakareatia te 0 ki te 1, ka 0.
0=2y\left(\frac{1}{1+0\times 1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
Tangohia te 0 i te 1, ka 1.
0=2y\left(\frac{1}{1+0}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
Whakareatia te 0 ki te 1, ka 0.
0=2y\left(\frac{1}{1}-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
Tāpirihia te 1 ki te 0, ka 1.
0=2y\left(1-\frac{x}{\sqrt{996\times 10^{6}}}\right)-1
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
0=2y\left(1-\frac{x}{\sqrt{996\times 1000000}}\right)-1
Tātaihia te 10 mā te pū o 6, kia riro ko 1000000.
0=2y\left(1-\frac{x}{\sqrt{996000000}}\right)-1
Whakareatia te 996 ki te 1000000, ka 996000000.
0=2y\left(1-\frac{x}{2000\sqrt{249}}\right)-1
Tauwehea te 996000000=2000^{2}\times 249. Tuhia anō te pūtake rua o te hua \sqrt{2000^{2}\times 249} hei hua o ngā pūtake rua \sqrt{2000^{2}}\sqrt{249}. Tuhia te pūtakerua o te 2000^{2}.
0=2y\left(1-\frac{x\sqrt{249}}{2000\left(\sqrt{249}\right)^{2}}\right)-1
Whakangāwaritia te tauraro o \frac{x}{2000\sqrt{249}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{249}.
0=2y\left(1-\frac{x\sqrt{249}}{2000\times 249}\right)-1
Ko te pūrua o \sqrt{249} ko 249.
0=2y\left(1-\frac{x\sqrt{249}}{498000}\right)-1
Whakareatia te 2000 ki te 249, ka 498000.
0=2y+2y\left(-\frac{x\sqrt{249}}{498000}\right)-1
Whakamahia te āhuatanga tohatoha hei whakarea te 2y ki te 1-\frac{x\sqrt{249}}{498000}.
0=2y+\frac{x\sqrt{249}}{-249000}y-1
Whakakorea atu te tauwehe pūnoa nui rawa 498000 i roto i te 2 me te 498000.
0=2y+\frac{x\sqrt{249}y}{-249000}-1
Tuhia te \frac{x\sqrt{249}}{-249000}y hei hautanga kotahi.
2y+\frac{x\sqrt{249}y}{-249000}-1=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2y+\frac{x\sqrt{249}y}{-249000}=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-498000y+x\sqrt{249}y=-249000
Whakareatia ngā taha e rua o te whārite ki te -249000.
\left(-498000+x\sqrt{249}\right)y=-249000
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(\sqrt{249}x-498000\right)y=-249000
He hanga arowhānui tō te whārite.
\frac{\left(\sqrt{249}x-498000\right)y}{\sqrt{249}x-498000}=-\frac{249000}{\sqrt{249}x-498000}
Whakawehea ngā taha e rua ki te -498000+x\sqrt{249}.
y=-\frac{249000}{\sqrt{249}x-498000}
Mā te whakawehe ki te -498000+x\sqrt{249} ka wetekia te whakareanga ki te -498000+x\sqrt{249}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}