Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

0\times 9x^{2}-\frac{1}{4}y^{2}
Whakareatia te 0 ki te 0, ka 0.
0x^{2}-\frac{1}{4}y^{2}
Whakareatia te 0 ki te 9, ka 0.
0-\frac{1}{4}y^{2}
Ko te tau i whakarea ki te kore ka hua ko te kore.
-\frac{1}{4}y^{2}
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\mathrm{d}}{\mathrm{d}y}(0\times 9x^{2}-\frac{1}{4}y^{2})
Whakareatia te 0 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}y}(0x^{2}-\frac{1}{4}y^{2})
Whakareatia te 0 ki te 9, ka 0.
\frac{\mathrm{d}}{\mathrm{d}y}(0-\frac{1}{4}y^{2})
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}y}(-\frac{1}{4}y^{2})
Ko te tau i tāpiria he kore ka hua koia tonu.
2\left(-\frac{1}{4}\right)y^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-\frac{1}{2}y^{2-1}
Whakareatia 2 ki te -\frac{1}{4}.
-\frac{1}{2}y^{1}
Tango 1 mai i 2.
-\frac{1}{2}y
Mō tētahi kupu t, t^{1}=t.