Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

0\times 9t^{1}-t^{6}
Whakareatia te 0 ki te 0, ka 0.
0t^{1}-t^{6}
Whakareatia te 0 ki te 9, ka 0.
0t-t^{6}
Tātaihia te t mā te pū o 1, kia riro ko t.
0-t^{6}
Ko te tau i whakarea ki te kore ka hua ko te kore.
-t^{6}
Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{\mathrm{d}}{\mathrm{d}t}(0\times 9t^{1}-t^{6})
Whakareatia te 0 ki te 0, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0t^{1}-t^{6})
Whakareatia te 0 ki te 9, ka 0.
\frac{\mathrm{d}}{\mathrm{d}t}(0t-t^{6})
Tātaihia te t mā te pū o 1, kia riro ko t.
\frac{\mathrm{d}}{\mathrm{d}t}(0-t^{6})
Ko te tau i whakarea ki te kore ka hua ko te kore.
\frac{\mathrm{d}}{\mathrm{d}t}(-t^{6})
Ko te tau i tāpiria he kore ka hua koia tonu.
6\left(-1\right)t^{6-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-6t^{6-1}
Whakareatia 6 ki te -1.
-6t^{5}
Tango 1 mai i 6.