Whakaoti mō x
x=\frac{3}{35}\approx 0.085714286
Graph
Tohaina
Kua tāruatia ki te papatopenga
0\times 5x+52=55-35x
Whakareatia te 0 ki te 0, ka 0.
0x+52=55-35x
Whakareatia te 0 ki te 5, ka 0.
0+52=55-35x
Ko te tau i whakarea ki te kore ka hua ko te kore.
52=55-35x
Tāpirihia te 0 ki te 52, ka 52.
55-35x=52
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-35x=52-55
Tangohia te 55 mai i ngā taha e rua.
-35x=-3
Tangohia te 55 i te 52, ka -3.
x=\frac{-3}{-35}
Whakawehea ngā taha e rua ki te -35.
x=\frac{3}{35}
Ka taea te hautanga \frac{-3}{-35} te whakamāmā ki te \frac{3}{35} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}