Whakaoti mō x
x=\frac{10\left(\sqrt{249}+4980\right)}{99599}\approx 0.501589347
Graph
Tohaina
Kua tāruatia ki te papatopenga
0\times 3=2x\left(1-\frac{100}{\sqrt{996\times 10^{6}}}\right)-1
Whakareatia te 0 ki te 0, ka 0.
0=2x\left(1-\frac{100}{\sqrt{996\times 10^{6}}}\right)-1
Whakareatia te 0 ki te 3, ka 0.
0=2x\left(1-\frac{100}{\sqrt{996\times 1000000}}\right)-1
Tātaihia te 10 mā te pū o 6, kia riro ko 1000000.
0=2x\left(1-\frac{100}{\sqrt{996000000}}\right)-1
Whakareatia te 996 ki te 1000000, ka 996000000.
0=2x\left(1-\frac{100}{2000\sqrt{249}}\right)-1
Tauwehea te 996000000=2000^{2}\times 249. Tuhia anō te pūtake rua o te hua \sqrt{2000^{2}\times 249} hei hua o ngā pūtake rua \sqrt{2000^{2}}\sqrt{249}. Tuhia te pūtakerua o te 2000^{2}.
0=2x\left(1-\frac{100\sqrt{249}}{2000\left(\sqrt{249}\right)^{2}}\right)-1
Whakangāwaritia te tauraro o \frac{100}{2000\sqrt{249}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{249}.
0=2x\left(1-\frac{100\sqrt{249}}{2000\times 249}\right)-1
Ko te pūrua o \sqrt{249} ko 249.
0=2x\left(1-\frac{\sqrt{249}}{20\times 249}\right)-1
Me whakakore tahi te 100 i te taurunga me te tauraro.
0=2x\left(1-\frac{\sqrt{249}}{4980}\right)-1
Whakareatia te 20 ki te 249, ka 4980.
0=2x+2x\left(-\frac{\sqrt{249}}{4980}\right)-1
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te 1-\frac{\sqrt{249}}{4980}.
0=2x+\frac{\sqrt{249}}{-2490}x-1
Whakakorea atu te tauwehe pūnoa nui rawa 4980 i roto i te 2 me te 4980.
0=2x+\frac{\sqrt{249}x}{-2490}-1
Tuhia te \frac{\sqrt{249}}{-2490}x hei hautanga kotahi.
2x+\frac{\sqrt{249}x}{-2490}-1=0
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x+\frac{\sqrt{249}x}{-2490}=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-4980x+\sqrt{249}x=-2490
Whakareatia ngā taha e rua o te whārite ki te -2490.
\left(-4980+\sqrt{249}\right)x=-2490
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(\sqrt{249}-4980\right)x=-2490
He hanga arowhānui tō te whārite.
\frac{\left(\sqrt{249}-4980\right)x}{\sqrt{249}-4980}=-\frac{2490}{\sqrt{249}-4980}
Whakawehea ngā taha e rua ki te -4980+\sqrt{249}.
x=-\frac{2490}{\sqrt{249}-4980}
Mā te whakawehe ki te -4980+\sqrt{249} ka wetekia te whakareanga ki te -4980+\sqrt{249}.
x=\frac{10\sqrt{249}+49800}{99599}
Whakawehe -2490 ki te -4980+\sqrt{249}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}