0.9x-0.5x-200 = 0.9x0.2 \%
Whakaoti mō x
x = \frac{1000000}{1991} = 502\frac{518}{1991} \approx 502.260170768
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.4x-200=0.9x\times \frac{0.2}{100}
Pahekotia te 0.9x me -0.5x, ka 0.4x.
0.4x-200=0.9x\times \frac{2}{1000}
Whakarohaina te \frac{0.2}{100} mā te whakarea i te taurunga me te tauraro ki te 10.
0.4x-200=0.9x\times \frac{1}{500}
Whakahekea te hautanga \frac{2}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
0.4x-200=\frac{9}{10}x\times \frac{1}{500}
Me tahuri ki tau ā-ira 0.9 ki te hautau \frac{9}{10}.
0.4x-200=\frac{9\times 1}{10\times 500}x
Me whakarea te \frac{9}{10} ki te \frac{1}{500} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
0.4x-200=\frac{9}{5000}x
Mahia ngā whakarea i roto i te hautanga \frac{9\times 1}{10\times 500}.
0.4x-200-\frac{9}{5000}x=0
Tangohia te \frac{9}{5000}x mai i ngā taha e rua.
\frac{1991}{5000}x-200=0
Pahekotia te 0.4x me -\frac{9}{5000}x, ka \frac{1991}{5000}x.
\frac{1991}{5000}x=200
Me tāpiri te 200 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=200\times \frac{5000}{1991}
Me whakarea ngā taha e rua ki te \frac{5000}{1991}, te tau utu o \frac{1991}{5000}.
x=\frac{200\times 5000}{1991}
Tuhia te 200\times \frac{5000}{1991} hei hautanga kotahi.
x=\frac{1000000}{1991}
Whakareatia te 200 ki te 5000, ka 1000000.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}