Aromātai
3
Tauwehe
3
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.98\times 25}{\frac{1\times 6+1}{6}\times 7}
Whakawehe \frac{0.98}{\frac{1\times 6+1}{6}} ki te \frac{7}{25} mā te whakarea \frac{0.98}{\frac{1\times 6+1}{6}} ki te tau huripoki o \frac{7}{25}.
\frac{24.5}{\frac{1\times 6+1}{6}\times 7}
Whakareatia te 0.98 ki te 25, ka 24.5.
\frac{24.5}{\frac{6+1}{6}\times 7}
Whakareatia te 1 ki te 6, ka 6.
\frac{24.5}{\frac{7}{6}\times 7}
Tāpirihia te 6 ki te 1, ka 7.
\frac{24.5}{\frac{7\times 7}{6}}
Tuhia te \frac{7}{6}\times 7 hei hautanga kotahi.
\frac{24.5}{\frac{49}{6}}
Whakareatia te 7 ki te 7, ka 49.
24.5\times \frac{6}{49}
Whakawehe 24.5 ki te \frac{49}{6} mā te whakarea 24.5 ki te tau huripoki o \frac{49}{6}.
\frac{49}{2}\times \frac{6}{49}
Me tahuri ki tau ā-ira 24.5 ki te hautau \frac{245}{10}. Whakahekea te hautanga \frac{245}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{49\times 6}{2\times 49}
Me whakarea te \frac{49}{2} ki te \frac{6}{49} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{6}{2}
Me whakakore tahi te 49 i te taurunga me te tauraro.
3
Whakawehea te 6 ki te 2, kia riro ko 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}