Whakaoti mō x
x = \frac{1225}{12} = 102\frac{1}{12} \approx 102.083333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{0.98}{x}=\frac{0.96}{100}
Whakawehea ngā taha e rua ki te 100.
\frac{0.98}{x}=\frac{96}{10000}
Whakarohaina te \frac{0.96}{100} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{0.98}{x}=\frac{6}{625}
Whakahekea te hautanga \frac{96}{10000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
625\times 0.98=6x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 625x, arā, te tauraro pātahi he tino iti rawa te kitea o x,625.
612.5=6x
Whakareatia te 625 ki te 0.98, ka 612.5.
6x=612.5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{612.5}{6}
Whakawehea ngā taha e rua ki te 6.
x=\frac{6125}{60}
Whakarohaina te \frac{612.5}{6} mā te whakarea i te taurunga me te tauraro ki te 10.
x=\frac{1225}{12}
Whakahekea te hautanga \frac{6125}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}