Aromātai
-\frac{442503}{1750}\approx -252.858857143
Tauwehe
-\frac{442503}{1750} = -252\frac{1503}{1750} = -252.85885714285715
Tohaina
Kua tāruatia ki te papatopenga
0.94-\frac{1}{7}\times \frac{74}{125}-\frac{6}{7}\times 296
Me tahuri ki tau ā-ira 0.592 ki te hautau \frac{592}{1000}. Whakahekea te hautanga \frac{592}{1000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
0.94-\frac{1\times 74}{7\times 125}-\frac{6}{7}\times 296
Me whakarea te \frac{1}{7} ki te \frac{74}{125} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
0.94-\frac{74}{875}-\frac{6}{7}\times 296
Mahia ngā whakarea i roto i te hautanga \frac{1\times 74}{7\times 125}.
\frac{47}{50}-\frac{74}{875}-\frac{6}{7}\times 296
Me tahuri ki tau ā-ira 0.94 ki te hautau \frac{94}{100}. Whakahekea te hautanga \frac{94}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1645}{1750}-\frac{148}{1750}-\frac{6}{7}\times 296
Ko te maha noa iti rawa atu o 50 me 875 ko 1750. Me tahuri \frac{47}{50} me \frac{74}{875} ki te hautau me te tautūnga 1750.
\frac{1645-148}{1750}-\frac{6}{7}\times 296
Tā te mea he rite te tauraro o \frac{1645}{1750} me \frac{148}{1750}, me tango rāua mā te tango i ō raua taurunga.
\frac{1497}{1750}-\frac{6}{7}\times 296
Tangohia te 148 i te 1645, ka 1497.
\frac{1497}{1750}-\frac{6\times 296}{7}
Tuhia te \frac{6}{7}\times 296 hei hautanga kotahi.
\frac{1497}{1750}-\frac{1776}{7}
Whakareatia te 6 ki te 296, ka 1776.
\frac{1497}{1750}-\frac{444000}{1750}
Ko te maha noa iti rawa atu o 1750 me 7 ko 1750. Me tahuri \frac{1497}{1750} me \frac{1776}{7} ki te hautau me te tautūnga 1750.
\frac{1497-444000}{1750}
Tā te mea he rite te tauraro o \frac{1497}{1750} me \frac{444000}{1750}, me tango rāua mā te tango i ō raua taurunga.
-\frac{442503}{1750}
Tangohia te 444000 i te 1497, ka -442503.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}