Whakaoti mō x
x = \frac{465}{13} = 35\frac{10}{13} \approx 35.769230769
Graph
Tohaina
Kua tāruatia ki te papatopenga
6.8\left(x+45\right)=\left(x+45-35\right)\times 12
Whakareatia te 0.85 ki te 8, ka 6.8.
6.8x+306=\left(x+45-35\right)\times 12
Whakamahia te āhuatanga tohatoha hei whakarea te 6.8 ki te x+45.
6.8x+306=\left(x+10\right)\times 12
Tangohia te 35 i te 45, ka 10.
6.8x+306=12x+120
Whakamahia te āhuatanga tohatoha hei whakarea te x+10 ki te 12.
6.8x+306-12x=120
Tangohia te 12x mai i ngā taha e rua.
-5.2x+306=120
Pahekotia te 6.8x me -12x, ka -5.2x.
-5.2x=120-306
Tangohia te 306 mai i ngā taha e rua.
-5.2x=-186
Tangohia te 306 i te 120, ka -186.
x=\frac{-186}{-5.2}
Whakawehea ngā taha e rua ki te -5.2.
x=\frac{-1860}{-52}
Whakarohaina te \frac{-186}{-5.2} mā te whakarea i te taurunga me te tauraro ki te 10.
x=\frac{465}{13}
Whakahekea te hautanga \frac{-1860}{-52} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}