Whakaoti mō x
x=\frac{3\sqrt{41}-17}{8}\approx 0.276171589
x=\frac{-3\sqrt{41}-17}{8}\approx -4.526171589
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.8x^{2}+3.4x=1
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
0.8x^{2}+3.4x-1=1-1
Me tango 1 mai i ngā taha e rua o te whārite.
0.8x^{2}+3.4x-1=0
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
x=\frac{-3.4±\sqrt{3.4^{2}-4\times 0.8\left(-1\right)}}{2\times 0.8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 0.8 mō a, 3.4 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3.4±\sqrt{11.56-4\times 0.8\left(-1\right)}}{2\times 0.8}
Pūruatia 3.4 mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-3.4±\sqrt{11.56-3.2\left(-1\right)}}{2\times 0.8}
Whakareatia -4 ki te 0.8.
x=\frac{-3.4±\sqrt{11.56+3.2}}{2\times 0.8}
Whakareatia -3.2 ki te -1.
x=\frac{-3.4±\sqrt{14.76}}{2\times 0.8}
Tāpiri 11.56 ki te 3.2 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-3.4±\frac{3\sqrt{41}}{5}}{2\times 0.8}
Tuhia te pūtakerua o te 14.76.
x=\frac{-3.4±\frac{3\sqrt{41}}{5}}{1.6}
Whakareatia 2 ki te 0.8.
x=\frac{3\sqrt{41}-17}{1.6\times 5}
Nā, me whakaoti te whārite x=\frac{-3.4±\frac{3\sqrt{41}}{5}}{1.6} ina he tāpiri te ±. Tāpiri -3.4 ki te \frac{3\sqrt{41}}{5}.
x=\frac{3\sqrt{41}-17}{8}
Whakawehe \frac{-17+3\sqrt{41}}{5} ki te 1.6 mā te whakarea \frac{-17+3\sqrt{41}}{5} ki te tau huripoki o 1.6.
x=\frac{-3\sqrt{41}-17}{1.6\times 5}
Nā, me whakaoti te whārite x=\frac{-3.4±\frac{3\sqrt{41}}{5}}{1.6} ina he tango te ±. Tango \frac{3\sqrt{41}}{5} mai i -3.4.
x=\frac{-3\sqrt{41}-17}{8}
Whakawehe \frac{-17-3\sqrt{41}}{5} ki te 1.6 mā te whakarea \frac{-17-3\sqrt{41}}{5} ki te tau huripoki o 1.6.
x=\frac{3\sqrt{41}-17}{8} x=\frac{-3\sqrt{41}-17}{8}
Kua oti te whārite te whakatau.
0.8x^{2}+3.4x=1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{0.8x^{2}+3.4x}{0.8}=\frac{1}{0.8}
Whakawehea ngā taha e rua o te whārite ki te 0.8, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\frac{3.4}{0.8}x=\frac{1}{0.8}
Mā te whakawehe ki te 0.8 ka wetekia te whakareanga ki te 0.8.
x^{2}+4.25x=\frac{1}{0.8}
Whakawehe 3.4 ki te 0.8 mā te whakarea 3.4 ki te tau huripoki o 0.8.
x^{2}+4.25x=1.25
Whakawehe 1 ki te 0.8 mā te whakarea 1 ki te tau huripoki o 0.8.
x^{2}+4.25x+2.125^{2}=1.25+2.125^{2}
Whakawehea te 4.25, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2.125. Nā, tāpiria te pūrua o te 2.125 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4.25x+4.515625=1.25+4.515625
Pūruatia 2.125 mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+4.25x+4.515625=5.765625
Tāpiri 1.25 ki te 4.515625 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+2.125\right)^{2}=5.765625
Tauwehea x^{2}+4.25x+4.515625. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2.125\right)^{2}}=\sqrt{5.765625}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2.125=\frac{3\sqrt{41}}{8} x+2.125=-\frac{3\sqrt{41}}{8}
Whakarūnātia.
x=\frac{3\sqrt{41}-17}{8} x=\frac{-3\sqrt{41}-17}{8}
Me tango 2.125 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}