0.8 - \frac { 8 } { 15 } + 2 \frac { 2 } { 3 } \quad \text { (o) } 5 \frac { 1 } { 4 } \times 2.8 - 13
Aromātai
\frac{196o}{5}-\frac{191}{15}
Whakaroha
\frac{196o}{5}-\frac{191}{15}
Tohaina
Kua tāruatia ki te papatopenga
\frac{4}{5}-\frac{8}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Me tahuri ki tau ā-ira 0.8 ki te hautau \frac{8}{10}. Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{12}{15}-\frac{8}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Ko te maha noa iti rawa atu o 5 me 15 ko 15. Me tahuri \frac{4}{5} me \frac{8}{15} ki te hautau me te tautūnga 15.
\frac{12-8}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Tā te mea he rite te tauraro o \frac{12}{15} me \frac{8}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{4}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Tangohia te 8 i te 12, ka 4.
\frac{4}{15}+\frac{6+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Whakareatia te 2 ki te 3, ka 6.
\frac{4}{15}+\frac{8}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Tāpirihia te 6 ki te 2, ka 8.
\frac{4}{15}+\frac{8}{3}o\times \frac{20+1}{4}\times 2.8-13
Whakareatia te 5 ki te 4, ka 20.
\frac{4}{15}+\frac{8}{3}o\times \frac{21}{4}\times 2.8-13
Tāpirihia te 20 ki te 1, ka 21.
\frac{4}{15}+\frac{8\times 21}{3\times 4}o\times 2.8-13
Me whakarea te \frac{8}{3} ki te \frac{21}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{4}{15}+\frac{168}{12}o\times 2.8-13
Mahia ngā whakarea i roto i te hautanga \frac{8\times 21}{3\times 4}.
\frac{4}{15}+14o\times 2.8-13
Whakawehea te 168 ki te 12, kia riro ko 14.
\frac{4}{15}+39.2o-13
Whakareatia te 14 ki te 2.8, ka 39.2.
\frac{4}{15}+39.2o-\frac{195}{15}
Me tahuri te 13 ki te hautau \frac{195}{15}.
\frac{4-195}{15}+39.2o
Tā te mea he rite te tauraro o \frac{4}{15} me \frac{195}{15}, me tango rāua mā te tango i ō raua taurunga.
-\frac{191}{15}+39.2o
Tangohia te 195 i te 4, ka -191.
\frac{4}{5}-\frac{8}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Me tahuri ki tau ā-ira 0.8 ki te hautau \frac{8}{10}. Whakahekea te hautanga \frac{8}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{12}{15}-\frac{8}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Ko te maha noa iti rawa atu o 5 me 15 ko 15. Me tahuri \frac{4}{5} me \frac{8}{15} ki te hautau me te tautūnga 15.
\frac{12-8}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Tā te mea he rite te tauraro o \frac{12}{15} me \frac{8}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{4}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Tangohia te 8 i te 12, ka 4.
\frac{4}{15}+\frac{6+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Whakareatia te 2 ki te 3, ka 6.
\frac{4}{15}+\frac{8}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Tāpirihia te 6 ki te 2, ka 8.
\frac{4}{15}+\frac{8}{3}o\times \frac{20+1}{4}\times 2.8-13
Whakareatia te 5 ki te 4, ka 20.
\frac{4}{15}+\frac{8}{3}o\times \frac{21}{4}\times 2.8-13
Tāpirihia te 20 ki te 1, ka 21.
\frac{4}{15}+\frac{8\times 21}{3\times 4}o\times 2.8-13
Me whakarea te \frac{8}{3} ki te \frac{21}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{4}{15}+\frac{168}{12}o\times 2.8-13
Mahia ngā whakarea i roto i te hautanga \frac{8\times 21}{3\times 4}.
\frac{4}{15}+14o\times 2.8-13
Whakawehea te 168 ki te 12, kia riro ko 14.
\frac{4}{15}+39.2o-13
Whakareatia te 14 ki te 2.8, ka 39.2.
\frac{4}{15}+39.2o-\frac{195}{15}
Me tahuri te 13 ki te hautau \frac{195}{15}.
\frac{4-195}{15}+39.2o
Tā te mea he rite te tauraro o \frac{4}{15} me \frac{195}{15}, me tango rāua mā te tango i ō raua taurunga.
-\frac{191}{15}+39.2o
Tangohia te 195 i te 4, ka -191.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}